Christopher M Sande, Stone Chen, Dana V Mitchell, Ping Lin, Diana M Abraham, Jessie M Cheng, Talia Gebhard, Rujul J Deolikar, Colby Freeman, Mary Zhou, Sushant Kumar, Michael Bowman, Robert L Bowman, Shannon Zheng, Bolormaa Munkhbileg, Qijun Chen, Natasha L Stanley, Kathy Guo, Ajibike Lapite, Ryan Hausler, Deanne M Taylor, James Corines, Jennifer Jd Morrissette, David B Lieberman, Guang Yang, Olga Shestova, Saar Gill, Jiayin Zheng, Kelcy Smith-Simmer, Lauren G Banaszak, Kyle N Shoger, Erica F Reinig, Madilynn Peterson, Peter Nicholas, Amanda J Walne, Inderjeet Dokal, Justin P Rosenheck, Karolyn A Oetjen, Daniel C Link, Andrew E Gelman, Christopher R Reilly, Ritika Dutta, R Coleman Lindsley, Karyn J Brundige, Suneet Agarwal, Alison A Bertuch, Jane E Churpek, Laneshia K Tague, F Brad Johnson, Timothy S Olson, Daria V Babushok
{"title":"ATM-dependent DNA damage response constrains cell growth and drives clonal hematopoiesis in telomere biology disorders.","authors":"Christopher M Sande, Stone Chen, Dana V Mitchell, Ping Lin, Diana M Abraham, Jessie M Cheng, Talia Gebhard, Rujul J Deolikar, Colby Freeman, Mary Zhou, Sushant Kumar, Michael Bowman, Robert L Bowman, Shannon Zheng, Bolormaa Munkhbileg, Qijun Chen, Natasha L Stanley, Kathy Guo, Ajibike Lapite, Ryan Hausler, Deanne M Taylor, James Corines, Jennifer Jd Morrissette, David B Lieberman, Guang Yang, Olga Shestova, Saar Gill, Jiayin Zheng, Kelcy Smith-Simmer, Lauren G Banaszak, Kyle N Shoger, Erica F Reinig, Madilynn Peterson, Peter Nicholas, Amanda J Walne, Inderjeet Dokal, Justin P Rosenheck, Karolyn A Oetjen, Daniel C Link, Andrew E Gelman, Christopher R Reilly, Ritika Dutta, R Coleman Lindsley, Karyn J Brundige, Suneet Agarwal, Alison A Bertuch, Jane E Churpek, Laneshia K Tague, F Brad Johnson, Timothy S Olson, Daria V Babushok","doi":"10.1172/JCI181659","DOIUrl":null,"url":null,"abstract":"<p><p>Telomere biology disorders (TBD) are genetic diseases caused by defective telomere maintenance. TBD patients often develop bone marrow failure and have an increased risk of myeloid neoplasms. To better understand the factors underlying hematopoietic outcomes in TBD, we comprehensively evaluated acquired genetic alterations in hematopoietic cells from 166 pediatric and adult TBD patients. 47.6% of patients (28.8% of children, 56.1% of adults) had clonal hematopoiesis. Recurrent somatic alterations involved telomere maintenance genes (7.6%), spliceosome genes (10.4%, mainly U2AF1 p.S34), and chromosomal alterations (20.2%), including 1q gain (5.9%). Somatic variants affecting the DNA damage response (DDR) were identified in 21.5% of patients, including 20 presumed loss-of-function variants in ATM. Using multimodal approaches, including single-cell sequencing, assays of ATM activation, telomere dysfunction-induced foci analysis, and cell growth assays, we demonstrate telomere dysfunction-induced activation of ATM-dependent DDR pathway with increased senescence and apoptosis in TBD patient cells. Pharmacologic ATM inhibition, modeling the effects of somatic ATM variants, selectively improved TBD cell fitness by allowing cells to bypass DDR-mediated senescence without detectably inducing chromosomal instability. Our results indicate that ATM-dependent DDR induced by telomere dysfunction is a key contributor to TBD pathogenesis and suggest dampening hyperactive ATM-dependent DDR as a potential therapeutic intervention.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI181659","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Telomere biology disorders (TBD) are genetic diseases caused by defective telomere maintenance. TBD patients often develop bone marrow failure and have an increased risk of myeloid neoplasms. To better understand the factors underlying hematopoietic outcomes in TBD, we comprehensively evaluated acquired genetic alterations in hematopoietic cells from 166 pediatric and adult TBD patients. 47.6% of patients (28.8% of children, 56.1% of adults) had clonal hematopoiesis. Recurrent somatic alterations involved telomere maintenance genes (7.6%), spliceosome genes (10.4%, mainly U2AF1 p.S34), and chromosomal alterations (20.2%), including 1q gain (5.9%). Somatic variants affecting the DNA damage response (DDR) were identified in 21.5% of patients, including 20 presumed loss-of-function variants in ATM. Using multimodal approaches, including single-cell sequencing, assays of ATM activation, telomere dysfunction-induced foci analysis, and cell growth assays, we demonstrate telomere dysfunction-induced activation of ATM-dependent DDR pathway with increased senescence and apoptosis in TBD patient cells. Pharmacologic ATM inhibition, modeling the effects of somatic ATM variants, selectively improved TBD cell fitness by allowing cells to bypass DDR-mediated senescence without detectably inducing chromosomal instability. Our results indicate that ATM-dependent DDR induced by telomere dysfunction is a key contributor to TBD pathogenesis and suggest dampening hyperactive ATM-dependent DDR as a potential therapeutic intervention.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.