Zujian Xiong, Chaim T Sneiderman, Chloe R Kuminkoski, Jared Reinheimer, Lance Schwegman, ReidAnn E Sever, Ahmed Habib, Baoli Hu, Sameer Agnihotri, Dhivyaa Rajasundaram, Pascal O Zinn, Thomas G Forsthuber, Ian F Pollack, Xuejun Li, Itay Raphael, Gary Kohanbash
{"title":"Transcript-targeted antigen mapping reveals the potential of POSTN splicing junction epitopes in glioblastoma immunotherapy.","authors":"Zujian Xiong, Chaim T Sneiderman, Chloe R Kuminkoski, Jared Reinheimer, Lance Schwegman, ReidAnn E Sever, Ahmed Habib, Baoli Hu, Sameer Agnihotri, Dhivyaa Rajasundaram, Pascal O Zinn, Thomas G Forsthuber, Ian F Pollack, Xuejun Li, Itay Raphael, Gary Kohanbash","doi":"10.1038/s41435-025-00326-6","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor antigens are crucial for T-cell mediated immunotherapy, but identified antigens for gliomas remain limited. Aberrant splicing variants are commonly expressed in tumors, resulting in unique tumor isoforms with potential antigenic properties. Herein, we analyzed multi-omics data from 587 glioma patients and assembled a library of putative tumor-enriched isoform antigens (TIA) and corresponding peptides presented on each HLA-I allele. We constructed an individual-specific TIA peptide candidate repertoire for each patient based on their TIA expression and HLA-I haplotypes. TIAs were highly expressed, enriched with glioma malignancy, and demonstrated strong HLA-binding affinity. We focused on periostin isoform-203 (POSTN-203), which was associated with poor survival of patients and contained multiple predicted HLA-restricted peptide epitopes. A selected HLA-A11-restricted peptide from POSTN-203 (POSTN-203<sub>A11</sub>) induced antigen-specific T-cell responses against both peptide-pulsed and POSTN-203-expressing glioma cells in an HLA-specific manner. Our findings highlight TIAs as a promising source of immunogenic antigens and POSTN-203 as a potential promising target for glioma immunotherapy.</p>","PeriodicalId":12691,"journal":{"name":"Genes and immunity","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41435-025-00326-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor antigens are crucial for T-cell mediated immunotherapy, but identified antigens for gliomas remain limited. Aberrant splicing variants are commonly expressed in tumors, resulting in unique tumor isoforms with potential antigenic properties. Herein, we analyzed multi-omics data from 587 glioma patients and assembled a library of putative tumor-enriched isoform antigens (TIA) and corresponding peptides presented on each HLA-I allele. We constructed an individual-specific TIA peptide candidate repertoire for each patient based on their TIA expression and HLA-I haplotypes. TIAs were highly expressed, enriched with glioma malignancy, and demonstrated strong HLA-binding affinity. We focused on periostin isoform-203 (POSTN-203), which was associated with poor survival of patients and contained multiple predicted HLA-restricted peptide epitopes. A selected HLA-A11-restricted peptide from POSTN-203 (POSTN-203A11) induced antigen-specific T-cell responses against both peptide-pulsed and POSTN-203-expressing glioma cells in an HLA-specific manner. Our findings highlight TIAs as a promising source of immunogenic antigens and POSTN-203 as a potential promising target for glioma immunotherapy.
期刊介绍:
Genes & Immunity emphasizes studies investigating how genetic, genomic and functional variations affect immune cells and the immune system, and associated processes in the regulation of health and disease. It further highlights articles on the transcriptional and posttranslational control of gene products involved in signaling pathways regulating immune cells, and protective and destructive immune responses.