{"title":"Demographic history, genetic load, and the efficacy of selection in the globally invasive mosquito Aedes aegypti.","authors":"Tyler V Kent, Daniel R Schrider, Daniel R Matute","doi":"10.1093/gbe/evaf066","DOIUrl":null,"url":null,"abstract":"<p><p>Aedes aegypti is the main vector species of yellow fever, dengue, Zika and chikungunya. The species is originally from Africa but has experienced a spectacular expansion in its geographic range to a large swath of the world, the demographic effects of which have remained largely understudied. In this report, we examine whole-genome sequences from 6 countries in Africa, North America, and South America to investigate the demographic history of the spread of Ae. aegypti into the Americas and its impact on genomic diversity and deleterious genetic load. In the Americas, we observe patterns of strong population structure consistent with relatively low (but probably non-zero) levels of gene flow but occasional long-range dispersal and/or recolonization events. We also find evidence that the colonization of the Americas has resulted in introduction bottlenecks. However, while each sampling location shows evidence of a past population contraction and subsequent recovery, our results suggest that the bottlenecks in America have led to a reduction in genetic diversity of only ∼35% relative to African populations, and the American samples have retained high levels of genetic diversity (expected heterozygosity of ∼0.02 at synonymous sites). We additionally find that American populations of aegypti have experienced only a minor reduction in the efficacy of selection, with evidence for both an accumulation of deleterious alleles and some purging of strongly deleterious alleles. These results exemplify how an invasive species can expand its range with remarkable genetic resilience in the face of strong eradication pressure.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evaf066","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aedes aegypti is the main vector species of yellow fever, dengue, Zika and chikungunya. The species is originally from Africa but has experienced a spectacular expansion in its geographic range to a large swath of the world, the demographic effects of which have remained largely understudied. In this report, we examine whole-genome sequences from 6 countries in Africa, North America, and South America to investigate the demographic history of the spread of Ae. aegypti into the Americas and its impact on genomic diversity and deleterious genetic load. In the Americas, we observe patterns of strong population structure consistent with relatively low (but probably non-zero) levels of gene flow but occasional long-range dispersal and/or recolonization events. We also find evidence that the colonization of the Americas has resulted in introduction bottlenecks. However, while each sampling location shows evidence of a past population contraction and subsequent recovery, our results suggest that the bottlenecks in America have led to a reduction in genetic diversity of only ∼35% relative to African populations, and the American samples have retained high levels of genetic diversity (expected heterozygosity of ∼0.02 at synonymous sites). We additionally find that American populations of aegypti have experienced only a minor reduction in the efficacy of selection, with evidence for both an accumulation of deleterious alleles and some purging of strongly deleterious alleles. These results exemplify how an invasive species can expand its range with remarkable genetic resilience in the face of strong eradication pressure.
期刊介绍:
About the journal
Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.