Functional characterization of luciferase in a brittle star indicates parallel evolution influenced by genomic availability of haloalkane dehalogenase.
Emily S Lau, Marika Majerova, Nicholai M Hensley, Arnab Mukherjee, Michal Vasina, Daniel Pluskal, Jiri Damborsky, Zbynek Prokop, Jérôme Delroisse, Wendy-Shirley Bayaert, Elise Parey, Paola Oliveri, Ferdinand Marletaz, Martin Marek, Todd H Oakley
{"title":"Functional characterization of luciferase in a brittle star indicates parallel evolution influenced by genomic availability of haloalkane dehalogenase.","authors":"Emily S Lau, Marika Majerova, Nicholai M Hensley, Arnab Mukherjee, Michal Vasina, Daniel Pluskal, Jiri Damborsky, Zbynek Prokop, Jérôme Delroisse, Wendy-Shirley Bayaert, Elise Parey, Paola Oliveri, Ferdinand Marletaz, Martin Marek, Todd H Oakley","doi":"10.1093/molbev/msaf081","DOIUrl":null,"url":null,"abstract":"<p><p>Determining why convergent traits use distinct versus shared genetic components is crucial for understanding how evolutionary processes generate and sustain biodiversity. However, the factors dictating the genetic underpinnings of convergent traits remain incompletely understood. Here, we use heterologous protein expression, biochemical assays, and phylogenetic analyses to confirm the origin of a luciferase gene from haloalkane dehalogenases in the brittle star Amphiura filiformis. Through database searches and gene tree analyses, we also show a complex pattern of the presence and absence of haloalkane dehalogenases across organismal genomes. These results first confirm parallel evolution across a vast phylogenetic distance, because octocorals like Renilla also use luciferase derived from haloalkane dehalogenases. This parallel evolution is surprising, even though previously hypothesized, because many organisms that also use coelenterazine as the bioluminescence substrate evolved completely distinct luciferases. The inability to detect haloalkane dehalogenases in the genomes of several bioluminescent groups suggests that the distribution of this gene family influences its recruitment as a luciferase. Together, our findings highlight how biochemical function and genomic availability help determine whether distinct or shared genetic components are used during the convergent evolution of traits like bioluminescence.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msaf081","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Determining why convergent traits use distinct versus shared genetic components is crucial for understanding how evolutionary processes generate and sustain biodiversity. However, the factors dictating the genetic underpinnings of convergent traits remain incompletely understood. Here, we use heterologous protein expression, biochemical assays, and phylogenetic analyses to confirm the origin of a luciferase gene from haloalkane dehalogenases in the brittle star Amphiura filiformis. Through database searches and gene tree analyses, we also show a complex pattern of the presence and absence of haloalkane dehalogenases across organismal genomes. These results first confirm parallel evolution across a vast phylogenetic distance, because octocorals like Renilla also use luciferase derived from haloalkane dehalogenases. This parallel evolution is surprising, even though previously hypothesized, because many organisms that also use coelenterazine as the bioluminescence substrate evolved completely distinct luciferases. The inability to detect haloalkane dehalogenases in the genomes of several bioluminescent groups suggests that the distribution of this gene family influences its recruitment as a luciferase. Together, our findings highlight how biochemical function and genomic availability help determine whether distinct or shared genetic components are used during the convergent evolution of traits like bioluminescence.
期刊介绍:
Molecular Biology and Evolution
Journal Overview:
Publishes research at the interface of molecular (including genomics) and evolutionary biology
Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic
Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research
Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.