Identifying hotspots and risk factors for tick-borne encephalitis virus emergence at its range margins to guide interventions, Great Britain.

IF 9.9 2区 医学 Q1 INFECTIOUS DISEASES
Richard Mj Hassall, Maya Holding, Jolyon M Medlock, Festus A Asaaga, Sophie O Vanwambeke, Roger Hewson, Bethan V Purse
{"title":"Identifying hotspots and risk factors for tick-borne encephalitis virus emergence at its range margins to guide interventions, Great Britain.","authors":"Richard Mj Hassall, Maya Holding, Jolyon M Medlock, Festus A Asaaga, Sophie O Vanwambeke, Roger Hewson, Bethan V Purse","doi":"10.2807/1560-7917.ES.2025.30.13.2400441","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundTick-borne encephalitis virus (TBEV) is expanding its range in Europe, with increasing human cases reported. Since the first detection of TBEV in ticks in the United Kingdom in 2019, one possible, two probable and two confirmed autochthonous cases in humans have been reported.AimWe aimed to understand the environmental and ecological factors limiting TBEV foci at their range edge and predict suitable areas for TBEV establishment across Great Britain (GB) by modelling patterns of exposure to TBEV in deer.MethodsWe developed spatial risk models for TBEV by integrating data between 2018 and 2021 on antibodies against tick-borne flavivirus in fallow, muntjac, red and roe deer with data on potential risk factors, including climate, land use, forest connectivity and distributions of bank voles and yellow-necked mice. We overlayed modelled suitability for TBEV exposure across GB with estimations on number of visitors to predict areas of high human exposure risk.ResultsModels for fallow, muntjac and roe deer performed well in independent validation (Boyce index > 0.92). Probable exposure to TBEV was more likely to occur in sites with a greater percentage cover of coniferous woodland, with multiple deer species, higher winter temperatures and rates of spring warming.ConclusionThe resulting TBEV suitability maps can be used by public health bodies in GB to tailor surveillance and identify probable high-risk areas for human exposure to guide awareness raising and vaccination policy. Combining animal surveillance and iterative spatial risk modelling can enhance preparedness in areas of tick-borne disease emergence.</p>","PeriodicalId":12161,"journal":{"name":"Eurosurveillance","volume":"30 13","pages":""},"PeriodicalIF":9.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969960/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurosurveillance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2807/1560-7917.ES.2025.30.13.2400441","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

BackgroundTick-borne encephalitis virus (TBEV) is expanding its range in Europe, with increasing human cases reported. Since the first detection of TBEV in ticks in the United Kingdom in 2019, one possible, two probable and two confirmed autochthonous cases in humans have been reported.AimWe aimed to understand the environmental and ecological factors limiting TBEV foci at their range edge and predict suitable areas for TBEV establishment across Great Britain (GB) by modelling patterns of exposure to TBEV in deer.MethodsWe developed spatial risk models for TBEV by integrating data between 2018 and 2021 on antibodies against tick-borne flavivirus in fallow, muntjac, red and roe deer with data on potential risk factors, including climate, land use, forest connectivity and distributions of bank voles and yellow-necked mice. We overlayed modelled suitability for TBEV exposure across GB with estimations on number of visitors to predict areas of high human exposure risk.ResultsModels for fallow, muntjac and roe deer performed well in independent validation (Boyce index > 0.92). Probable exposure to TBEV was more likely to occur in sites with a greater percentage cover of coniferous woodland, with multiple deer species, higher winter temperatures and rates of spring warming.ConclusionThe resulting TBEV suitability maps can be used by public health bodies in GB to tailor surveillance and identify probable high-risk areas for human exposure to guide awareness raising and vaccination policy. Combining animal surveillance and iterative spatial risk modelling can enhance preparedness in areas of tick-borne disease emergence.

背景蜱传脑炎病毒(TBEV)在欧洲的传播范围不断扩大,报告的人类病例也越来越多。AimWe aimed to understand the environmental and ecological factors limiting TBEV fociates at their range edge and predict suitable areas for TBEV establishment across Great Britain (GB) by modelling patterns of exposure to TBEV in deer.方法我们通过整合 2018 年至 2021 年期间关于秋鹿、麂鹿、红鹿和狍子的蜱传黄病毒抗体数据以及潜在风险因素的数据,包括气候、土地利用、森林连通性以及滩田鼠和黄颈鼠的分布情况,建立了 TBEV 的空间风险模型。我们将整个 GB 的 TBEV 暴露适宜性模型与游客数量估计值进行了叠加,以预测人类暴露风险较高的地区。在针叶林覆盖率较高、有多种鹿类、冬季气温较高和春季升温率较高的地区,更有可能发生 TBEV 暴露。将动物监测与迭代空间风险建模相结合,可以提高蜱传疾病爆发地区的防疫能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Eurosurveillance
Eurosurveillance INFECTIOUS DISEASES-
CiteScore
32.70
自引率
2.10%
发文量
430
审稿时长
3-8 weeks
期刊介绍: Eurosurveillance is a European peer-reviewed journal focusing on the epidemiology, surveillance, prevention, and control of communicable diseases relevant to Europe.It is a weekly online journal, with 50 issues per year published on Thursdays. The journal includes short rapid communications, in-depth research articles, surveillance reports, reviews, and perspective papers. It excels in timely publication of authoritative papers on ongoing outbreaks or other public health events. Under special circumstances when current events need to be urgently communicated to readers for rapid public health action, e-alerts can be released outside of the regular publishing schedule. Additionally, topical compilations and special issues may be provided in PDF format.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信