{"title":"Unlocking the dual power of Charybdis natator shell: antiviral and larvicidal activities.","authors":"Karnan Ramachandran, Senthil Bakthavatchalam, Shunmuga Vadivu Ramalingam, Ramachandran Vinayagam, Mukeshwaran Ramesh, Sukumaran Marimuthu, Zhi-Hong Wen, Chandramohan Govindasamy, Khalid M Almutairi, Yi-Hao Lo","doi":"10.1186/s40643-025-00868-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the in silico anti-arboviral potential of zoochemicals derived from the methanolic extract of Charybdis natator shell, alongside their larvicidal efficacy against Aedes aegypti 4th instar larvae. Through GC-MS analysis, 27 zoochemicals were identified, demonstrating promising in silico activity against molecular antiviral targets: DENV2 protease (PDB: 6MO1) for anti-dengue, RNA polymerase (PDB: 5U04) for anti-Zika, and nsP2 protease (PDB: 3TRK) for anti-chikungunya. A strong positive correlation (r = 0.726-0.889) in binding affinities (kcal/mol) suggests a consistent inhibitory mechanism across these targets. Furthermore, PASS analysis indicates higher probabilities of activity (Pa) for insecticidal properties compared to antiviral efficacy, highlighting their dual potential as larvicidal agents and antiviral candidates. The methanolic extract of Charybdis natator shell exhibited potent larvicidal activity against Aedes aegypti (LC₅₀ = 81.001 µg/mL) in a dose-dependent manner (R<sup>2</sup> = 0.968). In silico analysis further elucidated its inhibitory action on key growth regulators of A. aegypti, underscoring its potential to disrupt larval development. These findings highlight the dual utility of C. natator shell extract in vector management and in mitigating the transmission of arboviral diseases such as Dengue, Zika, and Chikungunya. The extract's promise as an eco-friendly, cost-effective source for developing novel insecticidal and antiviral agents merits further exploration.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"12 1","pages":"29"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971121/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-025-00868-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the in silico anti-arboviral potential of zoochemicals derived from the methanolic extract of Charybdis natator shell, alongside their larvicidal efficacy against Aedes aegypti 4th instar larvae. Through GC-MS analysis, 27 zoochemicals were identified, demonstrating promising in silico activity against molecular antiviral targets: DENV2 protease (PDB: 6MO1) for anti-dengue, RNA polymerase (PDB: 5U04) for anti-Zika, and nsP2 protease (PDB: 3TRK) for anti-chikungunya. A strong positive correlation (r = 0.726-0.889) in binding affinities (kcal/mol) suggests a consistent inhibitory mechanism across these targets. Furthermore, PASS analysis indicates higher probabilities of activity (Pa) for insecticidal properties compared to antiviral efficacy, highlighting their dual potential as larvicidal agents and antiviral candidates. The methanolic extract of Charybdis natator shell exhibited potent larvicidal activity against Aedes aegypti (LC₅₀ = 81.001 µg/mL) in a dose-dependent manner (R2 = 0.968). In silico analysis further elucidated its inhibitory action on key growth regulators of A. aegypti, underscoring its potential to disrupt larval development. These findings highlight the dual utility of C. natator shell extract in vector management and in mitigating the transmission of arboviral diseases such as Dengue, Zika, and Chikungunya. The extract's promise as an eco-friendly, cost-effective source for developing novel insecticidal and antiviral agents merits further exploration.
期刊介绍:
Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology