Christopher J Edelmaier, Stephen J Klawa, S Mahsa Mofidi, Qunzhao Wang, Shreeya Bhonge, Ellysa J D Vogt, Brandy N Curtis, Wenzheng Shi, Sonya M Hanson, Daphne Klotsa, M Gregory Forest, Amy S Gladfelter, Ronit Freeman, Ehssan Nazockdast
{"title":"Charge distribution and helicity tune the binding of septin's amphipathic helix domain to membranes.","authors":"Christopher J Edelmaier, Stephen J Klawa, S Mahsa Mofidi, Qunzhao Wang, Shreeya Bhonge, Ellysa J D Vogt, Brandy N Curtis, Wenzheng Shi, Sonya M Hanson, Daphne Klotsa, M Gregory Forest, Amy S Gladfelter, Ronit Freeman, Ehssan Nazockdast","doi":"10.1016/j.bpj.2025.03.008","DOIUrl":null,"url":null,"abstract":"<p><p>Amphipathic helices (AHs) are secondary structures that can facilitate binding of proteins to the membrane by folding into a helix with hydrophobic and hydrophilic faces that interact with the same surfaces in the lipid membrane. Septins are cytoskeletal proteins that preferentially bind to domains of micron-scale curvature on the cell membrane. Studies have shown that AH domains in septin are essential for curvature sensing. We present the first computational study of septin AH interactions with lipid bilayers. Using all-atom simulations and metadynamics-enhanced sampling, we study the effect of charge distribution at the flanking ends of septin AH on the energy for helical folding and its consequences on the binding configuration and affinity to the membrane. This is relevant to septins, since the net positive charge on the flanking C-terminal amino acids is a conserved property across several organisms. Simulations revealed that the energy barrier for folding in the neutral-capped AH is much larger than the charge-capped AH, leading to a small fraction of AH folding and integration to the membrane compared to a significantly folded configuration in the bound charge-capped AH. These observations are consistent with the binding measurements of synthetic AH constructs with variable helicity to lipid vesicles. Additionally, we examined an extended AH sequence including eight amino acids upstream and downstream of the AH to mimic the native protein. Again, simulations and experiments show that the extended peptide, with a net positive charge at C-terminus, adopts a strong helical configuration in solution, giving rise to a higher membrane affinity. Altogether, these results identify the energy cost for folding of AHs as a regulator of AH binding configuration and affinity and provide a basic template for parameterizing AH-membrane interactions as a starting point for the future multiscale simulations for septin-membrane interactions.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.03.008","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Amphipathic helices (AHs) are secondary structures that can facilitate binding of proteins to the membrane by folding into a helix with hydrophobic and hydrophilic faces that interact with the same surfaces in the lipid membrane. Septins are cytoskeletal proteins that preferentially bind to domains of micron-scale curvature on the cell membrane. Studies have shown that AH domains in septin are essential for curvature sensing. We present the first computational study of septin AH interactions with lipid bilayers. Using all-atom simulations and metadynamics-enhanced sampling, we study the effect of charge distribution at the flanking ends of septin AH on the energy for helical folding and its consequences on the binding configuration and affinity to the membrane. This is relevant to septins, since the net positive charge on the flanking C-terminal amino acids is a conserved property across several organisms. Simulations revealed that the energy barrier for folding in the neutral-capped AH is much larger than the charge-capped AH, leading to a small fraction of AH folding and integration to the membrane compared to a significantly folded configuration in the bound charge-capped AH. These observations are consistent with the binding measurements of synthetic AH constructs with variable helicity to lipid vesicles. Additionally, we examined an extended AH sequence including eight amino acids upstream and downstream of the AH to mimic the native protein. Again, simulations and experiments show that the extended peptide, with a net positive charge at C-terminus, adopts a strong helical configuration in solution, giving rise to a higher membrane affinity. Altogether, these results identify the energy cost for folding of AHs as a regulator of AH binding configuration and affinity and provide a basic template for parameterizing AH-membrane interactions as a starting point for the future multiscale simulations for septin-membrane interactions.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.