Impeller Position in a Magnetically Levitated Rotodynamic Blood Pump and Its Impact on In-Silico Hemocompatibility.

IF 3.1 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Marko Grujic, Rosmarie Schoefbeck, Bente Thamsen, Philipp Aigner, Michael Röhrich, Stefan Jakubek, Daniel Zimpfer, Marcus Granegger
{"title":"Impeller Position in a Magnetically Levitated Rotodynamic Blood Pump and Its Impact on In-Silico Hemocompatibility.","authors":"Marko Grujic, Rosmarie Schoefbeck, Bente Thamsen, Philipp Aigner, Michael Röhrich, Stefan Jakubek, Daniel Zimpfer, Marcus Granegger","doi":"10.1097/MAT.0000000000002434","DOIUrl":null,"url":null,"abstract":"<p><p>In magnetically levitated rotodynamic blood pumps (RPBs), the impeller position depends on a balance of electromagnetic and fluid dynamic forces. The aim of this study was to describe the impeller position of the HeartMate 3 over a wide range of operating conditions and assess its potential impact on hemocompatibility. Three-dimensional impeller positions were measured using a transparent HeartMate 3 pump casing, laser distance measurements, and a high-speed camera. Accompanying computational fluid dynamic (CFD) hemocompatibility predictions of a displaced and centered impeller at a typical operating point were compared. Impeller positions vary substantially with different operating points with a maximum axial displacement of 223 µm at 7 L/min and 7,000 rpm and a maximum radial displacement of 145 µm at 0 L/min and 7,000 rpm. In CFD, a displaced impeller had only a minor influence on global pump parameters (<2%) at an operating point of 5 L/min and 6,000 rpm. However, deviations in local flow metrics of up to 9% were observed compared with a centered impeller simulation. We here provide the impeller position of the HeartMate 3 over the full operating range (0-9 L/min, 3,000-7,000 rpm) to support further research, including more extensive CFD simulations.</p>","PeriodicalId":8844,"journal":{"name":"ASAIO Journal","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASAIO Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1097/MAT.0000000000002434","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In magnetically levitated rotodynamic blood pumps (RPBs), the impeller position depends on a balance of electromagnetic and fluid dynamic forces. The aim of this study was to describe the impeller position of the HeartMate 3 over a wide range of operating conditions and assess its potential impact on hemocompatibility. Three-dimensional impeller positions were measured using a transparent HeartMate 3 pump casing, laser distance measurements, and a high-speed camera. Accompanying computational fluid dynamic (CFD) hemocompatibility predictions of a displaced and centered impeller at a typical operating point were compared. Impeller positions vary substantially with different operating points with a maximum axial displacement of 223 µm at 7 L/min and 7,000 rpm and a maximum radial displacement of 145 µm at 0 L/min and 7,000 rpm. In CFD, a displaced impeller had only a minor influence on global pump parameters (<2%) at an operating point of 5 L/min and 6,000 rpm. However, deviations in local flow metrics of up to 9% were observed compared with a centered impeller simulation. We here provide the impeller position of the HeartMate 3 over the full operating range (0-9 L/min, 3,000-7,000 rpm) to support further research, including more extensive CFD simulations.

磁悬浮旋转动力血液泵的叶轮位置及其对模拟血液相容性的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ASAIO Journal
ASAIO Journal 医学-工程:生物医学
CiteScore
6.60
自引率
7.10%
发文量
651
审稿时长
4-8 weeks
期刊介绍: ASAIO Journal is in the forefront of artificial organ research and development. On the cutting edge of innovative technology, it features peer-reviewed articles of the highest quality that describe research, development, the most recent advances in the design of artificial organ devices and findings from initial testing. Bimonthly, the ASAIO Journal features state-of-the-art investigations, laboratory and clinical trials, and discussions and opinions from experts around the world. The official publication of the American Society for Artificial Internal Organs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信