The self-replicating cellular organization of shoot apical meristems.

IF 2.4 2区 生物学 Q2 PLANT SCIENCES
Étienne Couturier, Paula Llanos, Antoine Lizée, Sébastien Besson, Jacques Dumais
{"title":"The self-replicating cellular organization of shoot apical meristems.","authors":"Étienne Couturier, Paula Llanos, Antoine Lizée, Sébastien Besson, Jacques Dumais","doi":"10.1002/ajb2.70027","DOIUrl":null,"url":null,"abstract":"<p><strong>Premise: </strong>Apical meristems of land plants have played a fundamental role in the evolution of complex shoot architectures. The most common structure of shoot apical meristems in bryophytes, lycophytes, and ferns is characterized by a single apical cell surrounded by a spiral of apical derivatives. Despite the importance of this type of meristem organization, it remains unclear how it is maintained at the apex.</p><p><strong>Methods: </strong>We analyzed the distribution of different meristem organizations within a data set of 205 images of shoot apical meristems representing 91 species of bryophytes, lycophytes, and ferns. In parallel, we developed a mathematical and computational model to determine whether the meristem structural types observed empirically are predicted from Sachs's division rules; namely, cells divide symmetrically while positioning their new wall at a right angle to the parental walls.</p><p><strong>Results: </strong>According to our data set, only four meristem structural types are observed in nature, corresponding to apical cells dividing along one, two, three, or four faces. In addition, the prevalence of the structural types in diverse plant lineages correlates with the shape of the meristems on which they are found. Our model based on Sachs's division rules indicates that as much as six meristem structural types are geometrically possible, but only the four types observed empirically are dynamically stable for realistic meristem geometries.</p><p><strong>Conclusions: </strong>Simple division rules, which we interpret as biophysical constraints on the assembly of the preprophase band, may therefore explain the cellular organization of the shoot apical meristem in three major groups of land plants.</p>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":" ","pages":"e70027"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/ajb2.70027","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Premise: Apical meristems of land plants have played a fundamental role in the evolution of complex shoot architectures. The most common structure of shoot apical meristems in bryophytes, lycophytes, and ferns is characterized by a single apical cell surrounded by a spiral of apical derivatives. Despite the importance of this type of meristem organization, it remains unclear how it is maintained at the apex.

Methods: We analyzed the distribution of different meristem organizations within a data set of 205 images of shoot apical meristems representing 91 species of bryophytes, lycophytes, and ferns. In parallel, we developed a mathematical and computational model to determine whether the meristem structural types observed empirically are predicted from Sachs's division rules; namely, cells divide symmetrically while positioning their new wall at a right angle to the parental walls.

Results: According to our data set, only four meristem structural types are observed in nature, corresponding to apical cells dividing along one, two, three, or four faces. In addition, the prevalence of the structural types in diverse plant lineages correlates with the shape of the meristems on which they are found. Our model based on Sachs's division rules indicates that as much as six meristem structural types are geometrically possible, but only the four types observed empirically are dynamically stable for realistic meristem geometries.

Conclusions: Simple division rules, which we interpret as biophysical constraints on the assembly of the preprophase band, may therefore explain the cellular organization of the shoot apical meristem in three major groups of land plants.

求助全文
约1分钟内获得全文 求助全文
来源期刊
American Journal of Botany
American Journal of Botany 生物-植物科学
CiteScore
4.90
自引率
6.70%
发文量
171
审稿时长
3 months
期刊介绍: The American Journal of Botany (AJB), the flagship journal of the Botanical Society of America (BSA), publishes peer-reviewed, innovative, significant research of interest to a wide audience of plant scientists in all areas of plant biology (structure, function, development, diversity, genetics, evolution, systematics), all levels of organization (molecular to ecosystem), and all plant groups and allied organisms (cyanobacteria, algae, fungi, and lichens). AJB requires authors to frame their research questions and discuss their results in terms of major questions of plant biology. In general, papers that are too narrowly focused, purely descriptive, natural history, broad surveys, or that contain only preliminary data will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信