Malik E. Juweid MD, Soud F. Al-Qasem MD, Fadlo R. Khuri MD, Andrea Gallamini MD, Philipp Lohmann PhD, Hans-Joachim Ziellenbach Dipl Päd, Felix M. Mottaghy MD
{"title":"Beyond fluorodeoxyglucose: Molecular imaging of cancer in precision medicine","authors":"Malik E. Juweid MD, Soud F. Al-Qasem MD, Fadlo R. Khuri MD, Andrea Gallamini MD, Philipp Lohmann PhD, Hans-Joachim Ziellenbach Dipl Päd, Felix M. Mottaghy MD","doi":"10.3322/caac.70007","DOIUrl":null,"url":null,"abstract":"<p>Cancer molecular imaging is the noninvasive visualization of a process unique to or altered in neoplasia, such as proliferation, glucose metabolism, and receptor expression, which is relevant to patient management. Several molecular imaging modalities are now available, including magnetic resonance, optical, and nuclear imaging. Nuclear imaging, particularly using fluorine-18–fluorodeoxyglucose positron emission tomography, is widely used in the staging and response assessment of multiple cancer types. However, at this writing, new nuclear medicine probes, especially positron emission tomography tracers, are increasingly used or are being investigated for cancer evaluation. This review focuses on these probes, their biologic targets, and the applications or potential applications for their use in the assessment of various neoplasms, including both probes available for commercial use—such as somatostatin receptor ligands in neuroendocrine tumors, prostate-specific membrane antigen ligands in prostate cancer, norepinephrine analogs in neural crest tumors like neuroblastoma, and estrogen analogs in breast cancer—and others in clinical development, such as fibroblast-activating protein inhibitors, C-X-C chemokine receptor type 4 ligands, and monoclonal antibodies targeting receptor tyrosine kinases, CD4-positive or CD8-positive tumor-infiltrating lymphocytes, tumor-associated macrophages, and cancer stem cell biomarkers. These developments represent a major step toward the integration of molecular imaging as a powerful tool in precision medicine, with an expectedly significant impact on patient management and outcome.</p>","PeriodicalId":137,"journal":{"name":"CA: A Cancer Journal for Clinicians","volume":"75 3","pages":"226-242"},"PeriodicalIF":503.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.3322/caac.70007","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CA: A Cancer Journal for Clinicians","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.3322/caac.70007","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer molecular imaging is the noninvasive visualization of a process unique to or altered in neoplasia, such as proliferation, glucose metabolism, and receptor expression, which is relevant to patient management. Several molecular imaging modalities are now available, including magnetic resonance, optical, and nuclear imaging. Nuclear imaging, particularly using fluorine-18–fluorodeoxyglucose positron emission tomography, is widely used in the staging and response assessment of multiple cancer types. However, at this writing, new nuclear medicine probes, especially positron emission tomography tracers, are increasingly used or are being investigated for cancer evaluation. This review focuses on these probes, their biologic targets, and the applications or potential applications for their use in the assessment of various neoplasms, including both probes available for commercial use—such as somatostatin receptor ligands in neuroendocrine tumors, prostate-specific membrane antigen ligands in prostate cancer, norepinephrine analogs in neural crest tumors like neuroblastoma, and estrogen analogs in breast cancer—and others in clinical development, such as fibroblast-activating protein inhibitors, C-X-C chemokine receptor type 4 ligands, and monoclonal antibodies targeting receptor tyrosine kinases, CD4-positive or CD8-positive tumor-infiltrating lymphocytes, tumor-associated macrophages, and cancer stem cell biomarkers. These developments represent a major step toward the integration of molecular imaging as a powerful tool in precision medicine, with an expectedly significant impact on patient management and outcome.
期刊介绍:
CA: A Cancer Journal for Clinicians" has been published by the American Cancer Society since 1950, making it one of the oldest peer-reviewed journals in oncology. It maintains the highest impact factor among all ISI-ranked journals. The journal effectively reaches a broad and diverse audience of health professionals, offering a unique platform to disseminate information on cancer prevention, early detection, various treatment modalities, palliative care, advocacy matters, quality-of-life topics, and more. As the premier journal of the American Cancer Society, it publishes mission-driven content that significantly influences patient care.