Wenhuan Xu, Dawei Luo, Kate Peterson, Yueru Zhao, Yue Yu, Zhengyang Ye, Jiejie Sun, Ke Yan, Tongli Wang
{"title":"Advancements in ecological niche models for forest adaptation to climate change: a comprehensive review.","authors":"Wenhuan Xu, Dawei Luo, Kate Peterson, Yueru Zhao, Yue Yu, Zhengyang Ye, Jiejie Sun, Ke Yan, Tongli Wang","doi":"10.1111/brv.70023","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change poses significant challenges to the health and functions of forest ecosystems. Ecological niche models have emerged as crucial tools for understanding the impact of climate change on forests at the population, species, and ecosystem levels. These models also play a pivotal role in developing adaptive forest conservation and management strategies. Recent advancements in niche model development have led to enhanced prediction accuracy and broadened applications of niche models, driven using high-quality climate data, improved model algorithms, and the application of landscape genomic information. In this review, we start by elucidating the concept and rationale behind niche models in the context of forestry adaptation to climate change. We then provide an overview of the advancements in occurrence-based, trait-based, and genomics-based models, contributing to a more comprehensive understanding of species responses to climate change. In addition, we summarize findings from 338 studies to highlight the progress made in niche models for forest tree species, including data sources, model algorithms, future climate scenarios used and diverse applications. To assist researchers and practitioners, we provide an exemplar data set and accompanying source code as a tutorial, demonstrating the integration of population genetics into niche models. This paper aims to provide a concise yet comprehensive overview of the continuous advancements and refinements of niche models, serving as a valuable resource for effectively addressing the challenges posed by a changing climate.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/brv.70023","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change poses significant challenges to the health and functions of forest ecosystems. Ecological niche models have emerged as crucial tools for understanding the impact of climate change on forests at the population, species, and ecosystem levels. These models also play a pivotal role in developing adaptive forest conservation and management strategies. Recent advancements in niche model development have led to enhanced prediction accuracy and broadened applications of niche models, driven using high-quality climate data, improved model algorithms, and the application of landscape genomic information. In this review, we start by elucidating the concept and rationale behind niche models in the context of forestry adaptation to climate change. We then provide an overview of the advancements in occurrence-based, trait-based, and genomics-based models, contributing to a more comprehensive understanding of species responses to climate change. In addition, we summarize findings from 338 studies to highlight the progress made in niche models for forest tree species, including data sources, model algorithms, future climate scenarios used and diverse applications. To assist researchers and practitioners, we provide an exemplar data set and accompanying source code as a tutorial, demonstrating the integration of population genetics into niche models. This paper aims to provide a concise yet comprehensive overview of the continuous advancements and refinements of niche models, serving as a valuable resource for effectively addressing the challenges posed by a changing climate.
期刊介绍:
Biological Reviews is a scientific journal that covers a wide range of topics in the biological sciences. It publishes several review articles per issue, which are aimed at both non-specialist biologists and researchers in the field. The articles are scholarly and include extensive bibliographies. Authors are instructed to be aware of the diverse readership and write their articles accordingly.
The reviews in Biological Reviews serve as comprehensive introductions to specific fields, presenting the current state of the art and highlighting gaps in knowledge. Each article can be up to 20,000 words long and includes an abstract, a thorough introduction, and a statement of conclusions.
The journal focuses on publishing synthetic reviews, which are based on existing literature and address important biological questions. These reviews are interesting to a broad readership and are timely, often related to fast-moving fields or new discoveries. A key aspect of a synthetic review is that it goes beyond simply compiling information and instead analyzes the collected data to create a new theoretical or conceptual framework that can significantly impact the field.
Biological Reviews is abstracted and indexed in various databases, including Abstracts on Hygiene & Communicable Diseases, Academic Search, AgBiotech News & Information, AgBiotechNet, AGRICOLA Database, GeoRef, Global Health, SCOPUS, Weed Abstracts, and Reaction Citation Index, among others.