Advancements in ecological niche models for forest adaptation to climate change: a comprehensive review.

IF 11 1区 生物学 Q1 BIOLOGY
Wenhuan Xu, Dawei Luo, Kate Peterson, Yueru Zhao, Yue Yu, Zhengyang Ye, Jiejie Sun, Ke Yan, Tongli Wang
{"title":"Advancements in ecological niche models for forest adaptation to climate change: a comprehensive review.","authors":"Wenhuan Xu, Dawei Luo, Kate Peterson, Yueru Zhao, Yue Yu, Zhengyang Ye, Jiejie Sun, Ke Yan, Tongli Wang","doi":"10.1111/brv.70023","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change poses significant challenges to the health and functions of forest ecosystems. Ecological niche models have emerged as crucial tools for understanding the impact of climate change on forests at the population, species, and ecosystem levels. These models also play a pivotal role in developing adaptive forest conservation and management strategies. Recent advancements in niche model development have led to enhanced prediction accuracy and broadened applications of niche models, driven using high-quality climate data, improved model algorithms, and the application of landscape genomic information. In this review, we start by elucidating the concept and rationale behind niche models in the context of forestry adaptation to climate change. We then provide an overview of the advancements in occurrence-based, trait-based, and genomics-based models, contributing to a more comprehensive understanding of species responses to climate change. In addition, we summarize findings from 338 studies to highlight the progress made in niche models for forest tree species, including data sources, model algorithms, future climate scenarios used and diverse applications. To assist researchers and practitioners, we provide an exemplar data set and accompanying source code as a tutorial, demonstrating the integration of population genetics into niche models. This paper aims to provide a concise yet comprehensive overview of the continuous advancements and refinements of niche models, serving as a valuable resource for effectively addressing the challenges posed by a changing climate.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/brv.70023","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change poses significant challenges to the health and functions of forest ecosystems. Ecological niche models have emerged as crucial tools for understanding the impact of climate change on forests at the population, species, and ecosystem levels. These models also play a pivotal role in developing adaptive forest conservation and management strategies. Recent advancements in niche model development have led to enhanced prediction accuracy and broadened applications of niche models, driven using high-quality climate data, improved model algorithms, and the application of landscape genomic information. In this review, we start by elucidating the concept and rationale behind niche models in the context of forestry adaptation to climate change. We then provide an overview of the advancements in occurrence-based, trait-based, and genomics-based models, contributing to a more comprehensive understanding of species responses to climate change. In addition, we summarize findings from 338 studies to highlight the progress made in niche models for forest tree species, including data sources, model algorithms, future climate scenarios used and diverse applications. To assist researchers and practitioners, we provide an exemplar data set and accompanying source code as a tutorial, demonstrating the integration of population genetics into niche models. This paper aims to provide a concise yet comprehensive overview of the continuous advancements and refinements of niche models, serving as a valuable resource for effectively addressing the challenges posed by a changing climate.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Reviews
Biological Reviews 生物-生物学
CiteScore
21.30
自引率
2.00%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Biological Reviews is a scientific journal that covers a wide range of topics in the biological sciences. It publishes several review articles per issue, which are aimed at both non-specialist biologists and researchers in the field. The articles are scholarly and include extensive bibliographies. Authors are instructed to be aware of the diverse readership and write their articles accordingly. The reviews in Biological Reviews serve as comprehensive introductions to specific fields, presenting the current state of the art and highlighting gaps in knowledge. Each article can be up to 20,000 words long and includes an abstract, a thorough introduction, and a statement of conclusions. The journal focuses on publishing synthetic reviews, which are based on existing literature and address important biological questions. These reviews are interesting to a broad readership and are timely, often related to fast-moving fields or new discoveries. A key aspect of a synthetic review is that it goes beyond simply compiling information and instead analyzes the collected data to create a new theoretical or conceptual framework that can significantly impact the field. Biological Reviews is abstracted and indexed in various databases, including Abstracts on Hygiene & Communicable Diseases, Academic Search, AgBiotech News & Information, AgBiotechNet, AGRICOLA Database, GeoRef, Global Health, SCOPUS, Weed Abstracts, and Reaction Citation Index, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信