Squaraine Dyes for Organic Photomultiplication Photodetectors with 220% External Quantum Efficiency at 1240 nm.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Joshua Csucker, Elodie Didier, João Pedro Ferreira Assunção, Daniel Rentsch, Radha Kothandaraman, Dominik Bachmann, Ivan Shorubalko, Frank Nüesch, Roland Hany, Michael Bauer
{"title":"Squaraine Dyes for Organic Photomultiplication Photodetectors with 220% External Quantum Efficiency at 1240 nm.","authors":"Joshua Csucker, Elodie Didier, João Pedro Ferreira Assunção, Daniel Rentsch, Radha Kothandaraman, Dominik Bachmann, Ivan Shorubalko, Frank Nüesch, Roland Hany, Michael Bauer","doi":"10.1002/advs.202502320","DOIUrl":null,"url":null,"abstract":"<p><p>Near-infrared (NIR) light detection at wavelengths λ > 1100 nm is essential in modern science and technology. Emerging organic semiconductors are promising for solution-processed, flexible, and large-area NIR organic photodetectors (OPDs), but only a few organic chromophores with peak absorption beyond the silicon bandgap are available. Furthermore, the external quantum efficiency (EQE) and specific detectivity (D<sup>*</sup>) of NIR OPDs are restricted by insufficient exciton dissociation and high dark/noise current. Here, the combination of strong electron-accepting and -donating groups is used to synthesize a selection of novel NIR squaraine dyes with superior redshifted absorptions, peaking at 1165 nm in solution and extending to 1240 nm in a blend film. To overcome the tradeoff between long wavelength absorption and high photoresponse, NIR photons are detected utilizing a gain OPD design, where photomultiplication occurs via squaraine hole trap-induced injection of external charges. The OPD can achieve an EQE of 220% at 1240 nm and still maintains 25% in the absorption tail at 1400 nm, thereby surpassing existing NIR OPDs in a broad wavelength range beyond 1100 nm. The measured maximum D<sup>*</sup> equals 10<sup>9</sup> Jones at 1240 nm, and the detectivity estimated from the shot noise is ≈10<sup>11</sup> Jones, independent of the bias voltage.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2502320"},"PeriodicalIF":14.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202502320","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Near-infrared (NIR) light detection at wavelengths λ > 1100 nm is essential in modern science and technology. Emerging organic semiconductors are promising for solution-processed, flexible, and large-area NIR organic photodetectors (OPDs), but only a few organic chromophores with peak absorption beyond the silicon bandgap are available. Furthermore, the external quantum efficiency (EQE) and specific detectivity (D*) of NIR OPDs are restricted by insufficient exciton dissociation and high dark/noise current. Here, the combination of strong electron-accepting and -donating groups is used to synthesize a selection of novel NIR squaraine dyes with superior redshifted absorptions, peaking at 1165 nm in solution and extending to 1240 nm in a blend film. To overcome the tradeoff between long wavelength absorption and high photoresponse, NIR photons are detected utilizing a gain OPD design, where photomultiplication occurs via squaraine hole trap-induced injection of external charges. The OPD can achieve an EQE of 220% at 1240 nm and still maintains 25% in the absorption tail at 1400 nm, thereby surpassing existing NIR OPDs in a broad wavelength range beyond 1100 nm. The measured maximum D* equals 109 Jones at 1240 nm, and the detectivity estimated from the shot noise is ≈1011 Jones, independent of the bias voltage.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信