Predictive modeling of climate change impacts using Artificial Intelligence: a review for equitable governance and sustainable outcome.

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES
Kingsley Ukoba, Oluwatayo Racheal Onisuru, Tien-Chien Jen, Daniel M Madyira, Kehinde O Olatunji
{"title":"Predictive modeling of climate change impacts using Artificial Intelligence: a review for equitable governance and sustainable outcome.","authors":"Kingsley Ukoba, Oluwatayo Racheal Onisuru, Tien-Chien Jen, Daniel M Madyira, Kehinde O Olatunji","doi":"10.1007/s11356-025-36356-w","DOIUrl":null,"url":null,"abstract":"<p><p>The accelerating pace of climate change poses unprecedented challenges to global ecosystems and human societies. In response, this study reviews the power of Artificial Intelligence (AI) to develop advanced predictive models for assessing the multifaceted impacts of climate change. The study used the PRISMA framework to find, assess, and combine research on using AI in predicting climate change impacts. Integrating AI techniques, such as machine learning algorithms and predictive analytics, into climate modeling provides a robust framework for understanding and projecting the complex dynamics associated with global climate change. These models exhibit a high capacity for data collection, analyzing intricate patterns and integration, including their relationships within the datasets. They enable quick and accurate predictions of future climate scenarios, scenarios testing, historical eventualities, their magnitude, and adaptation. However, challenging issues like data gaps, especially in interconnected systems such as the atmosphere, are associated. Also, AI insight translation into an actionable recommendation recognizable by the policymakers, including ethical usage, is an emerging concern. Therefore, further advances to circumvent these will include the integration of AI with physical models, developing hybrid models, and generating synthetic climatic datasets to enhance data quality and gaps. Also, AI tools are being developed to aid decision-making for policy integration. AI-based predictive modeling is restructuring and bringing reformative change to the understanding of and approach toward climatic change through AI model development. AI guarantees an unfailing plan and a resilient future with sustainable approaches that empower scientists, policymakers, and communities.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-025-36356-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The accelerating pace of climate change poses unprecedented challenges to global ecosystems and human societies. In response, this study reviews the power of Artificial Intelligence (AI) to develop advanced predictive models for assessing the multifaceted impacts of climate change. The study used the PRISMA framework to find, assess, and combine research on using AI in predicting climate change impacts. Integrating AI techniques, such as machine learning algorithms and predictive analytics, into climate modeling provides a robust framework for understanding and projecting the complex dynamics associated with global climate change. These models exhibit a high capacity for data collection, analyzing intricate patterns and integration, including their relationships within the datasets. They enable quick and accurate predictions of future climate scenarios, scenarios testing, historical eventualities, their magnitude, and adaptation. However, challenging issues like data gaps, especially in interconnected systems such as the atmosphere, are associated. Also, AI insight translation into an actionable recommendation recognizable by the policymakers, including ethical usage, is an emerging concern. Therefore, further advances to circumvent these will include the integration of AI with physical models, developing hybrid models, and generating synthetic climatic datasets to enhance data quality and gaps. Also, AI tools are being developed to aid decision-making for policy integration. AI-based predictive modeling is restructuring and bringing reformative change to the understanding of and approach toward climatic change through AI model development. AI guarantees an unfailing plan and a resilient future with sustainable approaches that empower scientists, policymakers, and communities.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信