{"title":"Bio-inspired thermoelectric cement with interfacial selective immobilization towards self-powered buildings.","authors":"Yulin Wang, Yangzezhi Zheng, Weihuan Li, Shuai Xiao, Shengjun Chen, Jiarui Xing, Chenchen Xiong, Yang Zhou, Wei Zhang, Takehiko Hihara, Nosipho Moloto, Changwen Miao","doi":"10.1016/j.scib.2025.03.032","DOIUrl":null,"url":null,"abstract":"<p><p>Buildings and infrastructure significantly contribute to global energy consumption and CO<sub>2</sub> emissions. Transforming cement, the most widely used construction material, into a functional medium for heat harvesting presents a promising avenue to offset the energy demands of buildings. The disparity in diffusion rate between cations and anions within cement pore solution due to variations in interactions with pore walls, endows cement with inherent ionic thermoelectric properties. However, the isolation of pores by the dense cement matrix hinders the rapid transportation of ions with superior diffusion rates, impeding the enhancement of mobility difference between ions and limiting the enhancement of Seebeck coefficient. Inspired by the stem structure of plants, we present a cement-polyvinyl alcohol (PVA) composite (CPC) featuring aligned cement and PVA hydrogel layers. While PVA hydrogel layers provide ion diffusion highways for OH<sup>-</sup> ions, cement-PVA interfaces establish strong coordination bonds with Ca<sup>2+</sup> ions and weaker interactions with OH<sup>-</sup> ions, enabling selective immobilization, which amplifies the diffusion rate disparity between Ca<sup>2+</sup> and OH<sup>-</sup>. The CPC's multilayer structure yields abundant interfaces, providing ample interaction sites that maximize the contribution of cement ions to thermoelectric performance. The as-prepared composite achieves an impressive Seebeck coefficient of -40.5 mV/K and a figure of merit (ZT) of 6.6 × 10<sup>-2</sup>. Due to the engineered multilayer structure, the CPC also demonstrates superior mechanical strength and intrinsic energy storage potential, which has been assembled into a self-powered architecture. The biomimetic structure and interfacial selective immobilization mechanism may pave the way for the design and fabrication of high-performance ionic thermoelectric materials.</p>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":" ","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Bulletin","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.scib.2025.03.032","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Buildings and infrastructure significantly contribute to global energy consumption and CO2 emissions. Transforming cement, the most widely used construction material, into a functional medium for heat harvesting presents a promising avenue to offset the energy demands of buildings. The disparity in diffusion rate between cations and anions within cement pore solution due to variations in interactions with pore walls, endows cement with inherent ionic thermoelectric properties. However, the isolation of pores by the dense cement matrix hinders the rapid transportation of ions with superior diffusion rates, impeding the enhancement of mobility difference between ions and limiting the enhancement of Seebeck coefficient. Inspired by the stem structure of plants, we present a cement-polyvinyl alcohol (PVA) composite (CPC) featuring aligned cement and PVA hydrogel layers. While PVA hydrogel layers provide ion diffusion highways for OH- ions, cement-PVA interfaces establish strong coordination bonds with Ca2+ ions and weaker interactions with OH- ions, enabling selective immobilization, which amplifies the diffusion rate disparity between Ca2+ and OH-. The CPC's multilayer structure yields abundant interfaces, providing ample interaction sites that maximize the contribution of cement ions to thermoelectric performance. The as-prepared composite achieves an impressive Seebeck coefficient of -40.5 mV/K and a figure of merit (ZT) of 6.6 × 10-2. Due to the engineered multilayer structure, the CPC also demonstrates superior mechanical strength and intrinsic energy storage potential, which has been assembled into a self-powered architecture. The biomimetic structure and interfacial selective immobilization mechanism may pave the way for the design and fabrication of high-performance ionic thermoelectric materials.
期刊介绍:
Science Bulletin (Sci. Bull., formerly known as Chinese Science Bulletin) is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and the National Natural Science Foundation of China (NSFC). Sci. Bull. is a semi-monthly international journal publishing high-caliber peer-reviewed research on a broad range of natural sciences and high-tech fields on the basis of its originality, scientific significance and whether it is of general interest. In addition, we are committed to serving the scientific community with immediate, authoritative news and valuable insights into upcoming trends around the globe.