Tumor Antigen-Coated Two-Dimensional Black Phosphorus as a Nanovaccine for Synergistic Cancer Photothermal Therapy and Immunotherapy.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xuanying Liang, Genquan Wu, Ruixuan Chen, Xintong Lin, Jiansheng Xu, Wenjie Sun, Benqing Zhou
{"title":"Tumor Antigen-Coated Two-Dimensional Black Phosphorus as a Nanovaccine for Synergistic Cancer Photothermal Therapy and Immunotherapy.","authors":"Xuanying Liang, Genquan Wu, Ruixuan Chen, Xintong Lin, Jiansheng Xu, Wenjie Sun, Benqing Zhou","doi":"10.1021/acsabm.5c00229","DOIUrl":null,"url":null,"abstract":"<p><p>Vaccine immunotherapy is paving the way for an effective long-term immune response and targeted destruction of tumor cells and shows promise as a leading strategy in tumor treatment. Nanoparticles are crucial in combining vaccine immunotherapy and photothermal therapy (PTT), generating local tumor thermal ablation, and triggering a powerful antitumor immune response that inhibits tumor recurrence. In this study, we designed a nanovaccine that combined PTT and immunotherapy for tumors using two-dimensional black phosphorus (BP) as a nanoplatform that was modified with maleimide poly(ethylene glycol) (PEG-MAL) and coated with tumor antigen proteins (BP-PEG-MAL@antigen). The BP-PEG-MAL@antigen nanovaccines displayed outstanding stability and biocompatibility due to the comodification of PEG and antigen proteins. The nanovaccines induced strong immune responses in vitro and in vivo that effectively inhibited orthotopic and bilateral tumor growth, prolonged survival time, and improved the survival rate of mice. In addition, the nanovaccines generated a long-term immune response and effectively inhibited tumor recurrence.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Vaccine immunotherapy is paving the way for an effective long-term immune response and targeted destruction of tumor cells and shows promise as a leading strategy in tumor treatment. Nanoparticles are crucial in combining vaccine immunotherapy and photothermal therapy (PTT), generating local tumor thermal ablation, and triggering a powerful antitumor immune response that inhibits tumor recurrence. In this study, we designed a nanovaccine that combined PTT and immunotherapy for tumors using two-dimensional black phosphorus (BP) as a nanoplatform that was modified with maleimide poly(ethylene glycol) (PEG-MAL) and coated with tumor antigen proteins (BP-PEG-MAL@antigen). The BP-PEG-MAL@antigen nanovaccines displayed outstanding stability and biocompatibility due to the comodification of PEG and antigen proteins. The nanovaccines induced strong immune responses in vitro and in vivo that effectively inhibited orthotopic and bilateral tumor growth, prolonged survival time, and improved the survival rate of mice. In addition, the nanovaccines generated a long-term immune response and effectively inhibited tumor recurrence.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信