Lee-Woon Jang, Jeong-Hun Kim, Wonseok Lee, Jung-Hyun Lee, Gwang-Geun Oh, Hachul Jung, Seong-Woo Kim, Dae-Woo Jeon, Tae-Young Ha, Keun-A Chang, Jungsuk Kim
{"title":"Investigation of Structural, Optical, Electrical, and Biological Properties of a Porous Platinum Electrode for Neurostimulation Devices.","authors":"Lee-Woon Jang, Jeong-Hun Kim, Wonseok Lee, Jung-Hyun Lee, Gwang-Geun Oh, Hachul Jung, Seong-Woo Kim, Dae-Woo Jeon, Tae-Young Ha, Keun-A Chang, Jungsuk Kim","doi":"10.1021/acsabm.4c01974","DOIUrl":null,"url":null,"abstract":"<p><p>The structural and optical properties, as well as the electrical and biological characteristics of a porous platinum (Pt) structure for neurostimulation applications, are investigated. Critical factors such as biocompatibility, electrical performance, and structural and optical differences, which can adversely affect the functionality of implantable devices, are systematically analyzed and compared with general electrodes. By employing an integration of three-dimensional simulations and implantation experiments, we demonstrate that the remarkably extensive surface area, low reflectance, and outstanding peak current values inherent in porous Pt facilitate effective stimulation while simultaneously ensuring a high degree of biological safety. Our findings suggest that these beneficial characteristics collectively position porous Pt as a notably promising candidate for implantable electrodes in biomedical devices.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The structural and optical properties, as well as the electrical and biological characteristics of a porous platinum (Pt) structure for neurostimulation applications, are investigated. Critical factors such as biocompatibility, electrical performance, and structural and optical differences, which can adversely affect the functionality of implantable devices, are systematically analyzed and compared with general electrodes. By employing an integration of three-dimensional simulations and implantation experiments, we demonstrate that the remarkably extensive surface area, low reflectance, and outstanding peak current values inherent in porous Pt facilitate effective stimulation while simultaneously ensuring a high degree of biological safety. Our findings suggest that these beneficial characteristics collectively position porous Pt as a notably promising candidate for implantable electrodes in biomedical devices.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.