Novel poly-deep eutectic solvent-functionalized magnetic graphene oxide nanomaterials for high-performance solid-phase extraction of trypsin.

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Jing Chen, Xiyan He, Yuzhi Wang
{"title":"Novel poly-deep eutectic solvent-functionalized magnetic graphene oxide nanomaterials for high-performance solid-phase extraction of trypsin.","authors":"Jing Chen, Xiyan He, Yuzhi Wang","doi":"10.1039/d5ay00252d","DOIUrl":null,"url":null,"abstract":"<p><p>Three novel polymethacrylic acid-based deep eutectic solvent (DES)-functionalized magnetic graphene oxide composites were designed and successfully synthesized <i>via</i> the radical polymerization method. The aim was to achieve the selective solid-phase extraction of trypsin (Tryp). Among them, the magnetic extractant (MGO@PDES<sub>2</sub>) functionalized with a poly-deep eutectic solvent composed of tetraethylammonium chloride and methylpropionic acid at a molar ratio of 1 : 2 exhibited the highest extraction efficiency for Tryp. Owing to the high specific surface area of MGO and the abundant carboxyl functional groups in PDES<sub>2</sub>, the prepared MGO@PDES<sub>2</sub> exhibited excellent selectivity and stability for Tryp extraction. Under optimal conditions, the extraction capacity of Tryp by MGO@PDES<sub>2</sub> reached 708.85 mg g<sup>-1</sup>. The extraction driving forces between MGO@PDES<sub>2</sub> and Tryp were hydrogen-bonding interactions and electrostatic interactions. Among the seven biomacromolecules, MGO@PDES<sub>2</sub> displayed outstanding selectivity for Tryp. In addition, the results of cycling experiments indicated that MGO@PDES<sub>2</sub> could be reused many times without a significant change in extraction capacity. Moreover, the proposed method was successfully applied to extract Tryp from the crude extract of bovine pancreas, yielding satisfactory results. All the results suggest that MGO@PDES<sub>2</sub> is a promising magnetic extractant, which is expected to provide new ideas for the extraction and separation of proteins.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5ay00252d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Three novel polymethacrylic acid-based deep eutectic solvent (DES)-functionalized magnetic graphene oxide composites were designed and successfully synthesized via the radical polymerization method. The aim was to achieve the selective solid-phase extraction of trypsin (Tryp). Among them, the magnetic extractant (MGO@PDES2) functionalized with a poly-deep eutectic solvent composed of tetraethylammonium chloride and methylpropionic acid at a molar ratio of 1 : 2 exhibited the highest extraction efficiency for Tryp. Owing to the high specific surface area of MGO and the abundant carboxyl functional groups in PDES2, the prepared MGO@PDES2 exhibited excellent selectivity and stability for Tryp extraction. Under optimal conditions, the extraction capacity of Tryp by MGO@PDES2 reached 708.85 mg g-1. The extraction driving forces between MGO@PDES2 and Tryp were hydrogen-bonding interactions and electrostatic interactions. Among the seven biomacromolecules, MGO@PDES2 displayed outstanding selectivity for Tryp. In addition, the results of cycling experiments indicated that MGO@PDES2 could be reused many times without a significant change in extraction capacity. Moreover, the proposed method was successfully applied to extract Tryp from the crude extract of bovine pancreas, yielding satisfactory results. All the results suggest that MGO@PDES2 is a promising magnetic extractant, which is expected to provide new ideas for the extraction and separation of proteins.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信