{"title":"<i>Emerita Analoga</i> Shell-Derived CS/GO Composite Incorporated into a Biomimetic PAN Nanofiber Membrane for Enhanced Bone Tissue Regeneration.","authors":"Balaganesh Danagody, Neeraja Bose, Swathi Sudhakar, Vimalraj Selvaraj, Kalaivizhi Rajappan","doi":"10.1021/acsabm.4c01963","DOIUrl":null,"url":null,"abstract":"<p><p>Bone regeneration is a process that aims to restore the structure and function of damaged bone tissues. Modern approaches for bone regeneration involve a combination of strategies, including tissue engineering and biomaterials, to promote healing. In this study, electrospun nanofibers were developed by using biosynthesized chitosan (CS)- and graphene oxide (GO)-loaded polyacrylonitrile (PAN) nanofibers. These scaffolds demonstrated stable mechanical support and capability to promote rapid bone defect repair. The physicochemical properties of the prepared nanoparticles and nanofibers were characterized using XRD and XPS analysis. The nanofiber morphology and structure of the CS/GO composite were analyzed through SEM and TEM. In vitro studies and ALP activity demonstrated the membranes capability to promote new bone formation and support healing, and Alizarin red staining highlighted the membrane's ability to enhance cell-cell interactions and increase calcium deposition, crucial for tissue regeneration. Cytotoxicity analysis revealed that 97.66 ± 1.5% of MG-63 cells remained viable on the surface of the prepared nanofiber, as assessed by the MTT assay. At the molecular level, real-time RT-PCR was used to examine the mRNA expression of Runx2 and type 1 collagen. Promoting osteogenic gene expression and enhancing mineral deposition on the prepared nanofiber show significant potential in accelerating bone healing and ensuring the successful integration of the scaffold with the surrounding bone tissue. Based on these findings, we conclude that the CS/GO@PAN nanofibrous membrane holds significant promise as a substrate for bone regeneration.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Bone regeneration is a process that aims to restore the structure and function of damaged bone tissues. Modern approaches for bone regeneration involve a combination of strategies, including tissue engineering and biomaterials, to promote healing. In this study, electrospun nanofibers were developed by using biosynthesized chitosan (CS)- and graphene oxide (GO)-loaded polyacrylonitrile (PAN) nanofibers. These scaffolds demonstrated stable mechanical support and capability to promote rapid bone defect repair. The physicochemical properties of the prepared nanoparticles and nanofibers were characterized using XRD and XPS analysis. The nanofiber morphology and structure of the CS/GO composite were analyzed through SEM and TEM. In vitro studies and ALP activity demonstrated the membranes capability to promote new bone formation and support healing, and Alizarin red staining highlighted the membrane's ability to enhance cell-cell interactions and increase calcium deposition, crucial for tissue regeneration. Cytotoxicity analysis revealed that 97.66 ± 1.5% of MG-63 cells remained viable on the surface of the prepared nanofiber, as assessed by the MTT assay. At the molecular level, real-time RT-PCR was used to examine the mRNA expression of Runx2 and type 1 collagen. Promoting osteogenic gene expression and enhancing mineral deposition on the prepared nanofiber show significant potential in accelerating bone healing and ensuring the successful integration of the scaffold with the surrounding bone tissue. Based on these findings, we conclude that the CS/GO@PAN nanofibrous membrane holds significant promise as a substrate for bone regeneration.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.