Single Co Atom Catalyst Derived from Terpolymer Pyrolysis for Hydrogenation of Nitroarenes

IF 3.8 3区 化学 Q2 CHEMISTRY, PHYSICAL
ChemCatChem Pub Date : 2025-02-16 DOI:10.1002/cctc.202401902
Yanan Zhou, Anni Guo, Huawei Shen, Yue Wang, Fuxing Zhang, Xuejiao Rong, Yang Li, Xilong Yan, Ligong Chen, Bowei Wang
{"title":"Single Co Atom Catalyst Derived from Terpolymer Pyrolysis for Hydrogenation of Nitroarenes","authors":"Yanan Zhou,&nbsp;Anni Guo,&nbsp;Huawei Shen,&nbsp;Yue Wang,&nbsp;Fuxing Zhang,&nbsp;Xuejiao Rong,&nbsp;Yang Li,&nbsp;Xilong Yan,&nbsp;Ligong Chen,&nbsp;Bowei Wang","doi":"10.1002/cctc.202401902","DOIUrl":null,"url":null,"abstract":"<p>Recently, single atom catalysts (SACs) with isolated metal atom as the active site have received extensive attention for their excellent catalytic performance. However, limited by the strong aggregation tendency of monometallic atoms, the construction of SACs remains a formidable challenge. Herein, we developed a facile ternary copolymerization-pyrolysis approach to synthesize a single cobalt atom catalyst (Co<sub>1</sub>@NC) by employing amino-functionalized cobalt phthalocyanine (CoPc(NH<sub>2</sub>)<sub>4</sub>) as the metal precursor. Specially, CoPc(NH<sub>2</sub>)<sub>4</sub> was copolymerized with melamine and 1,4-phthalaldehyde to yield a terpolymer, thereby allowing CoPc to be more uniformly and stably distributed in the polymer network. Subsequently, the obtained terpolymer was pyrolyzed to afford Co<sub>1</sub>@NC. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC HAADF-STEM) and X-ray absorption spectroscopy (XAS) directly confirmed that the catalyst Co<sub>1</sub>@NC was a single cobalt atom catalyst. Furthermore, the large specific surface area (<i>S</i><sub>BET </sub>= 418.8 m<sup>2</sup>/g) and high cobalt content (2.71 wt%) of Co<sub>1</sub>@NC provided more cobalt active sites and therefore displayed excellent catalytic activity in the hydrogenation of nitrobenzene. In addition, the catalyst showed remarkable cyclic stability in five cycles and remained as the single atom catalyst.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 7","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cctc.202401902","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, single atom catalysts (SACs) with isolated metal atom as the active site have received extensive attention for their excellent catalytic performance. However, limited by the strong aggregation tendency of monometallic atoms, the construction of SACs remains a formidable challenge. Herein, we developed a facile ternary copolymerization-pyrolysis approach to synthesize a single cobalt atom catalyst (Co1@NC) by employing amino-functionalized cobalt phthalocyanine (CoPc(NH2)4) as the metal precursor. Specially, CoPc(NH2)4 was copolymerized with melamine and 1,4-phthalaldehyde to yield a terpolymer, thereby allowing CoPc to be more uniformly and stably distributed in the polymer network. Subsequently, the obtained terpolymer was pyrolyzed to afford Co1@NC. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC HAADF-STEM) and X-ray absorption spectroscopy (XAS) directly confirmed that the catalyst Co1@NC was a single cobalt atom catalyst. Furthermore, the large specific surface area (SBET = 418.8 m2/g) and high cobalt content (2.71 wt%) of Co1@NC provided more cobalt active sites and therefore displayed excellent catalytic activity in the hydrogenation of nitrobenzene. In addition, the catalyst showed remarkable cyclic stability in five cycles and remained as the single atom catalyst.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemCatChem
ChemCatChem 化学-物理化学
CiteScore
8.10
自引率
4.40%
发文量
511
审稿时长
1.3 months
期刊介绍: With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信