Recent Progress in the Electrocatalytic Synthesis of H2O2 from Graphite-Based Materials

IF 3.8 3区 化学 Q2 CHEMISTRY, PHYSICAL
ChemCatChem Pub Date : 2025-02-16 DOI:10.1002/cctc.202402062
Hengjun Shang, Yaning Zhang, Yuming Dong, Prof. Yongfa Zhu, Prof. Chengsi Pan
{"title":"Recent Progress in the Electrocatalytic Synthesis of H2O2 from Graphite-Based Materials","authors":"Hengjun Shang,&nbsp;Yaning Zhang,&nbsp;Yuming Dong,&nbsp;Prof. Yongfa Zhu,&nbsp;Prof. Chengsi Pan","doi":"10.1002/cctc.202402062","DOIUrl":null,"url":null,"abstract":"<p>Graphite-based catalysts, with their abundant availability, low cost, excellent electrical conductivity, and chemical stability, serve as an ideal candidate for eletrocatalytical synthesis of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). This review explores the fundamental principles of H₂O₂ production via the electrochemical oxygen reduction reaction (ORR) and the theoretical basis for evaluating catalyst selectivity. It summarizes the structural characteristics, classifications, and developmental history of graphite-based catalysts, with a focus on recent advancements. The discussion highlights strategies such as heteroatom doping, defect engineering, and surface oxygen functionalization, analyzing their effectiveness in designing novel high-performance catalysts. By rationally designing catalyst components and fine-tuning the microenvironment of active sites, it is possible to develop efficient and highly stable catalysts, narrowing the gap between experimental outcomes and theoretical predictions. This work aims to advance the scalable application of graphite-based materials in green chemistry and energy fields.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 7","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cctc.202402062","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Graphite-based catalysts, with their abundant availability, low cost, excellent electrical conductivity, and chemical stability, serve as an ideal candidate for eletrocatalytical synthesis of hydrogen peroxide (H2O2). This review explores the fundamental principles of H₂O₂ production via the electrochemical oxygen reduction reaction (ORR) and the theoretical basis for evaluating catalyst selectivity. It summarizes the structural characteristics, classifications, and developmental history of graphite-based catalysts, with a focus on recent advancements. The discussion highlights strategies such as heteroatom doping, defect engineering, and surface oxygen functionalization, analyzing their effectiveness in designing novel high-performance catalysts. By rationally designing catalyst components and fine-tuning the microenvironment of active sites, it is possible to develop efficient and highly stable catalysts, narrowing the gap between experimental outcomes and theoretical predictions. This work aims to advance the scalable application of graphite-based materials in green chemistry and energy fields.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemCatChem
ChemCatChem 化学-物理化学
CiteScore
8.10
自引率
4.40%
发文量
511
审稿时长
1.3 months
期刊介绍: With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信