Engineering Caffeic Acid O-Methyltransferase for Efficient De Novo Ferulic Acid Synthesis

IF 3.9 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Huai Qi Shang, Qing Bo Yang, Shan Qiang, Rong Zheng, Chao Qun Zhang, Ching Yuan Hu, Qi Hang Chen, Yong Hong Meng
{"title":"Engineering Caffeic Acid O-Methyltransferase for Efficient De Novo Ferulic Acid Synthesis","authors":"Huai Qi Shang,&nbsp;Qing Bo Yang,&nbsp;Shan Qiang,&nbsp;Rong Zheng,&nbsp;Chao Qun Zhang,&nbsp;Ching Yuan Hu,&nbsp;Qi Hang Chen,&nbsp;Yong Hong Meng","doi":"10.1002/elsc.70018","DOIUrl":null,"url":null,"abstract":"<p>Ferulic acid is a high-value chemical synthesized in plants. The ferulic acid biosynthesis is still affected by the insufficient methylation activity of caffeic acid O-methyltransferase (<i>COMT</i>). In this study, we engineered <i>COMT</i> from <i>Arabidopsis thaliana</i> to match caffeic acid, and the mutant <i>COMT</i><sup>N129V-H313A-F174L</sup> showed 4.19-fold enhanced catalytic efficiency for degrading caffeic acid. Then, we constructed the de novo synthesis pathway of ferulic acid by introducing tyrosine ammonia lyase from <i>Flavobacterium johnsoniae</i> (<i>FjTAL</i>), 4-hydroxyphenylacetate 3-hydroxylase from <i>Escherichia coli</i> (<i>EcHpaBC</i>), and mutant <i>COMT</i><sup>N129V-H313A-F174L</sup>, and further increased tyrosine synthesis. Furthermore, we overexpressed two copies of <i>COMT</i><sup>N129V-H313A-F174L</sup> and enhanced the supply of S-adenosyl-L-methionine (SAM) by expressed S-ribosylhomocysteine lyase (<i>luxS</i>) and 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase (<i>mtn</i>) to increase the production of ferulic acid. Finally, the production of ferulic acid reached 1260.37 mg/L in the shake-flask fermentation and 4377 mg/L using a 50 L bioreactor by the engineered FA-11. In conclusion, <i>COMT</i> enzyme engineering combined with global metabolic engineering effectively improved the production of ferulic acid and successfully obtained a fairly high level of ferulic acid production.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"25 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.70018","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Life Sciences","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsc.70018","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferulic acid is a high-value chemical synthesized in plants. The ferulic acid biosynthesis is still affected by the insufficient methylation activity of caffeic acid O-methyltransferase (COMT). In this study, we engineered COMT from Arabidopsis thaliana to match caffeic acid, and the mutant COMTN129V-H313A-F174L showed 4.19-fold enhanced catalytic efficiency for degrading caffeic acid. Then, we constructed the de novo synthesis pathway of ferulic acid by introducing tyrosine ammonia lyase from Flavobacterium johnsoniae (FjTAL), 4-hydroxyphenylacetate 3-hydroxylase from Escherichia coli (EcHpaBC), and mutant COMTN129V-H313A-F174L, and further increased tyrosine synthesis. Furthermore, we overexpressed two copies of COMTN129V-H313A-F174L and enhanced the supply of S-adenosyl-L-methionine (SAM) by expressed S-ribosylhomocysteine lyase (luxS) and 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase (mtn) to increase the production of ferulic acid. Finally, the production of ferulic acid reached 1260.37 mg/L in the shake-flask fermentation and 4377 mg/L using a 50 L bioreactor by the engineered FA-11. In conclusion, COMT enzyme engineering combined with global metabolic engineering effectively improved the production of ferulic acid and successfully obtained a fairly high level of ferulic acid production.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering in Life Sciences
Engineering in Life Sciences 工程技术-生物工程与应用微生物
CiteScore
6.40
自引率
3.70%
发文量
81
审稿时长
3 months
期刊介绍: Engineering in Life Sciences (ELS) focuses on engineering principles and innovations in life sciences and biotechnology. Life sciences and biotechnology covered in ELS encompass the use of biomolecules (e.g. proteins/enzymes), cells (microbial, plant and mammalian origins) and biomaterials for biosynthesis, biotransformation, cell-based treatment and bio-based solutions in industrial and pharmaceutical biotechnologies as well as in biomedicine. ELS especially aims to promote interdisciplinary collaborations among biologists, biotechnologists and engineers for quantitative understanding and holistic engineering (design-built-test) of biological parts and processes in the different application areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信