Huai Qi Shang, Qing Bo Yang, Shan Qiang, Rong Zheng, Chao Qun Zhang, Ching Yuan Hu, Qi Hang Chen, Yong Hong Meng
{"title":"Engineering Caffeic Acid O-Methyltransferase for Efficient De Novo Ferulic Acid Synthesis","authors":"Huai Qi Shang, Qing Bo Yang, Shan Qiang, Rong Zheng, Chao Qun Zhang, Ching Yuan Hu, Qi Hang Chen, Yong Hong Meng","doi":"10.1002/elsc.70018","DOIUrl":null,"url":null,"abstract":"<p>Ferulic acid is a high-value chemical synthesized in plants. The ferulic acid biosynthesis is still affected by the insufficient methylation activity of caffeic acid O-methyltransferase (<i>COMT</i>). In this study, we engineered <i>COMT</i> from <i>Arabidopsis thaliana</i> to match caffeic acid, and the mutant <i>COMT</i><sup>N129V-H313A-F174L</sup> showed 4.19-fold enhanced catalytic efficiency for degrading caffeic acid. Then, we constructed the de novo synthesis pathway of ferulic acid by introducing tyrosine ammonia lyase from <i>Flavobacterium johnsoniae</i> (<i>FjTAL</i>), 4-hydroxyphenylacetate 3-hydroxylase from <i>Escherichia coli</i> (<i>EcHpaBC</i>), and mutant <i>COMT</i><sup>N129V-H313A-F174L</sup>, and further increased tyrosine synthesis. Furthermore, we overexpressed two copies of <i>COMT</i><sup>N129V-H313A-F174L</sup> and enhanced the supply of S-adenosyl-L-methionine (SAM) by expressed S-ribosylhomocysteine lyase (<i>luxS</i>) and 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase (<i>mtn</i>) to increase the production of ferulic acid. Finally, the production of ferulic acid reached 1260.37 mg/L in the shake-flask fermentation and 4377 mg/L using a 50 L bioreactor by the engineered FA-11. In conclusion, <i>COMT</i> enzyme engineering combined with global metabolic engineering effectively improved the production of ferulic acid and successfully obtained a fairly high level of ferulic acid production.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"25 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.70018","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Life Sciences","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsc.70018","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ferulic acid is a high-value chemical synthesized in plants. The ferulic acid biosynthesis is still affected by the insufficient methylation activity of caffeic acid O-methyltransferase (COMT). In this study, we engineered COMT from Arabidopsis thaliana to match caffeic acid, and the mutant COMTN129V-H313A-F174L showed 4.19-fold enhanced catalytic efficiency for degrading caffeic acid. Then, we constructed the de novo synthesis pathway of ferulic acid by introducing tyrosine ammonia lyase from Flavobacterium johnsoniae (FjTAL), 4-hydroxyphenylacetate 3-hydroxylase from Escherichia coli (EcHpaBC), and mutant COMTN129V-H313A-F174L, and further increased tyrosine synthesis. Furthermore, we overexpressed two copies of COMTN129V-H313A-F174L and enhanced the supply of S-adenosyl-L-methionine (SAM) by expressed S-ribosylhomocysteine lyase (luxS) and 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase (mtn) to increase the production of ferulic acid. Finally, the production of ferulic acid reached 1260.37 mg/L in the shake-flask fermentation and 4377 mg/L using a 50 L bioreactor by the engineered FA-11. In conclusion, COMT enzyme engineering combined with global metabolic engineering effectively improved the production of ferulic acid and successfully obtained a fairly high level of ferulic acid production.
期刊介绍:
Engineering in Life Sciences (ELS) focuses on engineering principles and innovations in life sciences and biotechnology. Life sciences and biotechnology covered in ELS encompass the use of biomolecules (e.g. proteins/enzymes), cells (microbial, plant and mammalian origins) and biomaterials for biosynthesis, biotransformation, cell-based treatment and bio-based solutions in industrial and pharmaceutical biotechnologies as well as in biomedicine. ELS especially aims to promote interdisciplinary collaborations among biologists, biotechnologists and engineers for quantitative understanding and holistic engineering (design-built-test) of biological parts and processes in the different application areas.