Metabolic Engineering of a Serotonin Overproducing Saccharomyces cerevisiae Strain

IF 5.7 2区 生物学
Andrés Planells-Cárcel, Elena Valera-García, Guillermo Quintas, José Luis Martínez, Sara Muñiz-Calvo, José Manuel Guillamón
{"title":"Metabolic Engineering of a Serotonin Overproducing Saccharomyces cerevisiae Strain","authors":"Andrés Planells-Cárcel,&nbsp;Elena Valera-García,&nbsp;Guillermo Quintas,&nbsp;José Luis Martínez,&nbsp;Sara Muñiz-Calvo,&nbsp;José Manuel Guillamón","doi":"10.1111/1751-7915.70140","DOIUrl":null,"url":null,"abstract":"<p>The EU Green Deal prioritises the transformation of the chemical industry to a more environmentally sustainable model. This involves using microorganisms, such as <i>Saccharomyces cerevisiae</i>, to produce molecules more sustainably through biotechnological approaches. In this study, we demonstrate an example of serotonin production using <i>S. cerevisiae</i> as a cell factory, along with its optimisation and upscaling. To achieve this, we introduced two heterologous genes, the combination of tryptophan decarboxylase from <i>Clostridium sporogenes</i> (<i>Cs</i>TDC) and tryptamine 5-hydroxylase from <i>Oryza sativa</i> (<i>Os</i>T5H), to complete the serotonin biosynthetic pathway using L-tryptophan (L-TRP) as a precursor. By modifying <i>ARO4</i> to a feedback-resistant version (<i>ARO4</i>*), the flux of the shikimate pathway was significantly increased and serotonin production was achieved at levels up to 120 mg/L directly from the glucose source. After a medium optimisation, a final concentration of 80 g/L glucose and 300 mg/L of nitrogen resulted in better conditions for increasing serotonin titres. Using this medium in a 1 L bioreactor fermentation resulted in approximately 250 mg/L of serotonin. A targeted metabolomic study of the bioreactor growth medium identified potential bottlenecks in the serotonin-overproducing strain and future targets for increasing its titre. We have constructed a strain of <i>S. cerevisiae</i> that represents the first steps towards feasible industrial production of serotonin using a sustainable and environmentally friendly approach, paving the way for the development of similar biotechnological strategies in the future.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 4","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70140","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70140","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The EU Green Deal prioritises the transformation of the chemical industry to a more environmentally sustainable model. This involves using microorganisms, such as Saccharomyces cerevisiae, to produce molecules more sustainably through biotechnological approaches. In this study, we demonstrate an example of serotonin production using S. cerevisiae as a cell factory, along with its optimisation and upscaling. To achieve this, we introduced two heterologous genes, the combination of tryptophan decarboxylase from Clostridium sporogenes (CsTDC) and tryptamine 5-hydroxylase from Oryza sativa (OsT5H), to complete the serotonin biosynthetic pathway using L-tryptophan (L-TRP) as a precursor. By modifying ARO4 to a feedback-resistant version (ARO4*), the flux of the shikimate pathway was significantly increased and serotonin production was achieved at levels up to 120 mg/L directly from the glucose source. After a medium optimisation, a final concentration of 80 g/L glucose and 300 mg/L of nitrogen resulted in better conditions for increasing serotonin titres. Using this medium in a 1 L bioreactor fermentation resulted in approximately 250 mg/L of serotonin. A targeted metabolomic study of the bioreactor growth medium identified potential bottlenecks in the serotonin-overproducing strain and future targets for increasing its titre. We have constructed a strain of S. cerevisiae that represents the first steps towards feasible industrial production of serotonin using a sustainable and environmentally friendly approach, paving the way for the development of similar biotechnological strategies in the future.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信