Dr. Yannick Stöckl, Dr. Frank Rominger, Prof. Dr. A. Stephen K. Hashmi, Prof. Dr. Thomas Schaub
{"title":"Insights for the Hydrogen-Mediated Deoxydehydration (DODH) with Cp*ReO3 and Alkene Extrusion of Related Re(V)-Diolates","authors":"Dr. Yannick Stöckl, Dr. Frank Rominger, Prof. Dr. A. Stephen K. Hashmi, Prof. Dr. Thomas Schaub","doi":"10.1002/cctc.202402010","DOIUrl":null,"url":null,"abstract":"<p>To transform highly oxygenated molecules such as polyols from biomass into value-added chemicals, the deoxygenation via the deoxydehydration (DODH) is a promising approach. We report the catalytic DODH of substrates from renewable resources using Cp*ReO<sub>3</sub> (1 mol%, TON up to 32) as a catalyst and hydrogen as a reductant. Additionally, the synthesis of Re(V)-diolates is described for tartrates, glycerol and erythritol derivatives. These Re(V)-diolates were obtained in 35–53% yield and as mixtures of diastereomers. Their characterization was accomplished using 2D NMR, MS, IR and X-ray diffraction. A NOESY study revealed an intermolecular exchange of glycerol moieties for the diolate complex. Further, alkene extrusion experiments allowed us to establish a reactivity order for a variety of substituents. The olefin extrusion was the fastest for tartrate units and the slowest for glycerol and erythritol diolates.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 7","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cctc.202402010","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To transform highly oxygenated molecules such as polyols from biomass into value-added chemicals, the deoxygenation via the deoxydehydration (DODH) is a promising approach. We report the catalytic DODH of substrates from renewable resources using Cp*ReO3 (1 mol%, TON up to 32) as a catalyst and hydrogen as a reductant. Additionally, the synthesis of Re(V)-diolates is described for tartrates, glycerol and erythritol derivatives. These Re(V)-diolates were obtained in 35–53% yield and as mixtures of diastereomers. Their characterization was accomplished using 2D NMR, MS, IR and X-ray diffraction. A NOESY study revealed an intermolecular exchange of glycerol moieties for the diolate complex. Further, alkene extrusion experiments allowed us to establish a reactivity order for a variety of substituents. The olefin extrusion was the fastest for tartrate units and the slowest for glycerol and erythritol diolates.
期刊介绍:
With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.