Efficient 3D Eddy Current NDE Model Based on Finite Element Boundary Integral Method

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Yang Bao, Runze Liu, Ting Wan, Xiaokang Yin
{"title":"Efficient 3D Eddy Current NDE Model Based on Finite Element Boundary Integral Method","authors":"Yang Bao,&nbsp;Runze Liu,&nbsp;Ting Wan,&nbsp;Xiaokang Yin","doi":"10.1007/s10921-025-01180-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the finite element boundary integral (FEBI) method, for the first time, is applied to solve the 3-D arbitrary shaped eddy current nondestructive testing (ECNDT) problems. FEBI alleviates the extra computational costs of truncation region in finite element method (FEM) and the difficulty in derivation of the Green’s function in boundary element method (BEM). The boundary integral equation (BIE) selected is the combined field integral equation (CFIE) in the TENH (tangential testing of electric field and normal testing of magnetic field) form, which shows better convergence compared with other forms. In BEM, the equivalent electric and magnetic surface currents are expanded by Rao-Wilton-Glisson (RWG) vector basis functions. While in FEM, the electric field and electric surface current are expanded by tetrahedron-based edge elements and RWG vector basis functions, respectively. The discretized matrix achieved by BEM and FEM is coupled by the field continuity conditions. For ECNDT problems, inhomogeneous meshes are required due to the small size of cracks or slots than the whole solution domain. It makes the convergence for solving the coupled matrix formed by the sparse matrix generated by FEM and the dense matrix produced by BEM worse, thus, precondition is required for FEBI solution in iterative method, which complicates the solving procedure. To alleviate the cumbersome solving process, the inward-looking formulation method is studied to work as precondition by solving the inverse of FEM matrix directly, and then the coupled discretized matrix is solved iteratively. By evaluating several ECNDT benchmark cases involving the cylindrical flaws and surface slots, the predicted impedance changes achieved by FEBI method are compared with those by semi-analytical method, FEM, and experiment which demonstrates that the proposed FEBI method based forward solver can simulate the ECNDT problems both accurately and efficiently.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-025-01180-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the finite element boundary integral (FEBI) method, for the first time, is applied to solve the 3-D arbitrary shaped eddy current nondestructive testing (ECNDT) problems. FEBI alleviates the extra computational costs of truncation region in finite element method (FEM) and the difficulty in derivation of the Green’s function in boundary element method (BEM). The boundary integral equation (BIE) selected is the combined field integral equation (CFIE) in the TENH (tangential testing of electric field and normal testing of magnetic field) form, which shows better convergence compared with other forms. In BEM, the equivalent electric and magnetic surface currents are expanded by Rao-Wilton-Glisson (RWG) vector basis functions. While in FEM, the electric field and electric surface current are expanded by tetrahedron-based edge elements and RWG vector basis functions, respectively. The discretized matrix achieved by BEM and FEM is coupled by the field continuity conditions. For ECNDT problems, inhomogeneous meshes are required due to the small size of cracks or slots than the whole solution domain. It makes the convergence for solving the coupled matrix formed by the sparse matrix generated by FEM and the dense matrix produced by BEM worse, thus, precondition is required for FEBI solution in iterative method, which complicates the solving procedure. To alleviate the cumbersome solving process, the inward-looking formulation method is studied to work as precondition by solving the inverse of FEM matrix directly, and then the coupled discretized matrix is solved iteratively. By evaluating several ECNDT benchmark cases involving the cylindrical flaws and surface slots, the predicted impedance changes achieved by FEBI method are compared with those by semi-analytical method, FEM, and experiment which demonstrates that the proposed FEBI method based forward solver can simulate the ECNDT problems both accurately and efficiently.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信