Implementation of the Magnetic Barkhausen Noise Technique for Microstructural Characterization of Rail Steel

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
J. Jaramillo, J. C. Sánchez, F. A. Suárez-Bustamante, D. Vargas, G. Vargas, A. Toro, F. A. Franco
{"title":"Implementation of the Magnetic Barkhausen Noise Technique for Microstructural Characterization of Rail Steel","authors":"J. Jaramillo,&nbsp;J. C. Sánchez,&nbsp;F. A. Suárez-Bustamante,&nbsp;D. Vargas,&nbsp;G. Vargas,&nbsp;A. Toro,&nbsp;F. A. Franco","doi":"10.1007/s10921-025-01184-y","DOIUrl":null,"url":null,"abstract":"<div><p>In the present work, the feasibility of using Magnetic Barkhausen Noise (MBN) to identify variations in the microstructure of a commercial rail steel has been studied. To achieve this purpose a brand new rail, reference R260 was sectioned to obtain two samples that were subjected to quenching and normalizing heat treatments. The hardness and microstructure of the specimens were evaluated by conventional destructive and nondestructive evaluation. The MBN technique's sensibility to characterize different microstructures was studied, and the results were contrasted with hardness and residual stress measurements. The envelope of MBN signals proved to be useful to detect the presence of martensite at the surface of rail sections, mainly because of the high density of dislocations that is typical of this micro constituent in comparison with pearlitic or ferritic microstructures. The MBN signals showed strong correlation with the changes in hardness and microstructure of the samples, being the normalized sample the one with the highest amplitude signal of MBN. In contrast, the quenched sample with martensite microstructure had a lower MBN intensity. The results of this work show the potential of MBN for nondestructive evaluation (NDE) of rails in the field, which could improve the capacity of early detection of defects in railway systems.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-025-01184-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work, the feasibility of using Magnetic Barkhausen Noise (MBN) to identify variations in the microstructure of a commercial rail steel has been studied. To achieve this purpose a brand new rail, reference R260 was sectioned to obtain two samples that were subjected to quenching and normalizing heat treatments. The hardness and microstructure of the specimens were evaluated by conventional destructive and nondestructive evaluation. The MBN technique's sensibility to characterize different microstructures was studied, and the results were contrasted with hardness and residual stress measurements. The envelope of MBN signals proved to be useful to detect the presence of martensite at the surface of rail sections, mainly because of the high density of dislocations that is typical of this micro constituent in comparison with pearlitic or ferritic microstructures. The MBN signals showed strong correlation with the changes in hardness and microstructure of the samples, being the normalized sample the one with the highest amplitude signal of MBN. In contrast, the quenched sample with martensite microstructure had a lower MBN intensity. The results of this work show the potential of MBN for nondestructive evaluation (NDE) of rails in the field, which could improve the capacity of early detection of defects in railway systems.

Abstract Image

磁巴克豪森噪声技术在钢轨钢微观组织表征中的应用
在本工作中,研究了利用磁巴克豪森噪声(MBN)识别商用钢轨钢微观组织变化的可行性。为了达到这一目的,对一个全新的钢轨,参考R260进行了切片,得到了两个试样,分别进行了淬火和正火热处理。采用常规破坏和无损检测方法对试样的硬度和显微组织进行了评定。研究了MBN技术表征不同显微组织的敏感性,并将结果与硬度和残余应力测量结果进行了对比。MBN信号的包络被证明对检测铁路断面表面马氏体的存在是有用的,主要是因为与珠光体或铁素体显微组织相比,这种显微组织具有典型的高密度位错。MBN信号与试样硬度和显微组织的变化有较强的相关性,归一化后试样的MBN信号幅值最高。而马氏体组织淬火试样的MBN强度较低。本文的研究结果显示了MBN在铁路无损检测领域的潜力,可以提高铁路系统缺陷的早期检测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信