P. Rosaiah, Radhalayam Dhanalakshmi, Kilari Naveen Kumar, Masoom Raza Siddiqui, G. V. Lokeswara Reddy, N. Nanda Kumar Reddy, Liwen Zhang, Guru Prakash Nunna, Tae Jo Ko
{"title":"Eco-Innovation in Bi-Metallic Oxides: Pioneering Solutions for Dye Contamination and Bacterial Challenges","authors":"P. Rosaiah, Radhalayam Dhanalakshmi, Kilari Naveen Kumar, Masoom Raza Siddiqui, G. V. Lokeswara Reddy, N. Nanda Kumar Reddy, Liwen Zhang, Guru Prakash Nunna, Tae Jo Ko","doi":"10.1007/s10876-025-02794-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study delineates the synthesis of bimetallic bismuth nickel oxide (BNO) nanoparticles employing a microwave combustion method that integrates a green synthesis approach using <i>Trachyspermum ammi</i> (Ajwain) seed extract. The nanoparticles were subjected to an exhaustive suite of analytical techniques to assess their morphological, structural, optical, and electronic characteristics. Techniques utilized included scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-diffuse reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Photocatalytic performance of the synthesized BNO nanoparticles was evaluated through the degradation of Malachite Green (MG), a prevalent synthetic dye and notable aquatic contaminant. The nanoparticles exhibited a photodegradation efficiency of 97.18% for MG, following pseudo-first-order kinetics with a rate constant of 0.04669 min<sup>− 1</sup>. The degradation mechanism was elucidated through the scavenging of reactive oxygen species, particularly superoxide (O₂•-) and hydroxyl radicals (•OH), identifying them as the primary reactive species. In addition to photocatalytic activities, the BNO nanoparticles were tested for antibacterial efficacy of 93.97% and 96.69% against two bacterial strains such as <i>Enterococcus faecalis</i> (Gram-positive) and <i>Escherichia coli</i> (Gram-negative) respectively, demonstrating significant antibacterial properties.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-025-02794-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
This study delineates the synthesis of bimetallic bismuth nickel oxide (BNO) nanoparticles employing a microwave combustion method that integrates a green synthesis approach using Trachyspermum ammi (Ajwain) seed extract. The nanoparticles were subjected to an exhaustive suite of analytical techniques to assess their morphological, structural, optical, and electronic characteristics. Techniques utilized included scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-diffuse reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Photocatalytic performance of the synthesized BNO nanoparticles was evaluated through the degradation of Malachite Green (MG), a prevalent synthetic dye and notable aquatic contaminant. The nanoparticles exhibited a photodegradation efficiency of 97.18% for MG, following pseudo-first-order kinetics with a rate constant of 0.04669 min− 1. The degradation mechanism was elucidated through the scavenging of reactive oxygen species, particularly superoxide (O₂•-) and hydroxyl radicals (•OH), identifying them as the primary reactive species. In addition to photocatalytic activities, the BNO nanoparticles were tested for antibacterial efficacy of 93.97% and 96.69% against two bacterial strains such as Enterococcus faecalis (Gram-positive) and Escherichia coli (Gram-negative) respectively, demonstrating significant antibacterial properties.
期刊介绍:
The journal publishes the following types of papers: (a) original and important research;
(b) authoritative comprehensive reviews or short overviews of topics of current
interest; (c) brief but urgent communications on new significant research; and (d)
commentaries intended to foster the exchange of innovative or provocative ideas, and
to encourage dialogue, amongst researchers working in different cluster
disciplines.