{"title":"SDT: Cutting Datacenter Tax Through Simultaneous Data-Delivery Threads","authors":"Amin Mamandipoor;Huy Dinh Tran;Mohammad Alian","doi":"10.1109/LCA.2025.3549423","DOIUrl":null,"url":null,"abstract":"Networking is considered a datacenter tax, and hyperscalers push hard to provide high-performance networking with minimal resource expenditure. To keep up with the ever-increasing network rates, many CPU cycles are spent on the networking tax. We make a key observation that network processing threads can be simultaneously executed on server CPUs with minimal interference with the application threads. However, utilizing simultaneous multithreading (SMT) to scale the number of network threads with the number of application threads suffers from (1) failing to provide strict tail latency requirements for latency-critical applications, and (2) reducing the number of available hardware threads for application processes, thus contributing to a high datacenter network tax. In this work, we design, implement, and evaluate a chip-multiprocessor (CMP) with specialized Simultaneous Data-delivery Threads (SDT) per physical core. The key insight is that with judicious partitioning at the architectural level, SDT can safely co-run with application processes with guaranteed performance isolation. Our evaluation results, using full-system simulation, show that a 20-core CMP enhanced with SDT reduces the area and power consumption of a baseline 40-core CMP by 47.5% and 66%, respectively, while reducing network throughput by less than 10%.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 1","pages":"93-96"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10918746/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Networking is considered a datacenter tax, and hyperscalers push hard to provide high-performance networking with minimal resource expenditure. To keep up with the ever-increasing network rates, many CPU cycles are spent on the networking tax. We make a key observation that network processing threads can be simultaneously executed on server CPUs with minimal interference with the application threads. However, utilizing simultaneous multithreading (SMT) to scale the number of network threads with the number of application threads suffers from (1) failing to provide strict tail latency requirements for latency-critical applications, and (2) reducing the number of available hardware threads for application processes, thus contributing to a high datacenter network tax. In this work, we design, implement, and evaluate a chip-multiprocessor (CMP) with specialized Simultaneous Data-delivery Threads (SDT) per physical core. The key insight is that with judicious partitioning at the architectural level, SDT can safely co-run with application processes with guaranteed performance isolation. Our evaluation results, using full-system simulation, show that a 20-core CMP enhanced with SDT reduces the area and power consumption of a baseline 40-core CMP by 47.5% and 66%, respectively, while reducing network throughput by less than 10%.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.