CSCPR: Cross-Source-Context Indoor RGB-D Place Recognition

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Jing Liang;Zhuo Deng;Zheming Zhou;Min Sun;Omid Ghasemalizadeh;Cheng-Hao Kuo;Arnie Sen;Dinesh Manocha
{"title":"CSCPR: Cross-Source-Context Indoor RGB-D Place Recognition","authors":"Jing Liang;Zhuo Deng;Zheming Zhou;Min Sun;Omid Ghasemalizadeh;Cheng-Hao Kuo;Arnie Sen;Dinesh Manocha","doi":"10.1109/LRA.2025.3551080","DOIUrl":null,"url":null,"abstract":"We extend our previous work, PoCo (Liang et al. 2024), and present a new algorithm, Cross-Source-Context Place Recognition (CSCPR), for RGB-D indoor place recognition that integrates global retrieval and reranking into an end-to-end model and keeps the consistency of using Context-of-Clusters (CoCs) (Ma, et al. 2023) for feature processing. Unlike prior approaches that primarily focus on the RGB domain for place recognition reranking, CSCPR is designed to handle the RGB-D data. We apply the CoCs to handle cross-sourced and cross-scaled RGB-D point clouds and introduce two novel modules for reranking: the Self-Context Cluster (SCC) and the Cross Source Context Cluster (CSCC), which enhance feature representation and match query-database pairs based on local features, respectively. We also release two new datasets, ScanNetIPR and ARKitIPR. Our experiments demonstrate that CSCPR significantly outperforms state-of-the-art models on these datasets by at least 29.27% in Recall@1 on the ScanNet-PR dataset and 43.24% in the new datasets.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 5","pages":"4628-4635"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10924712/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We extend our previous work, PoCo (Liang et al. 2024), and present a new algorithm, Cross-Source-Context Place Recognition (CSCPR), for RGB-D indoor place recognition that integrates global retrieval and reranking into an end-to-end model and keeps the consistency of using Context-of-Clusters (CoCs) (Ma, et al. 2023) for feature processing. Unlike prior approaches that primarily focus on the RGB domain for place recognition reranking, CSCPR is designed to handle the RGB-D data. We apply the CoCs to handle cross-sourced and cross-scaled RGB-D point clouds and introduce two novel modules for reranking: the Self-Context Cluster (SCC) and the Cross Source Context Cluster (CSCC), which enhance feature representation and match query-database pairs based on local features, respectively. We also release two new datasets, ScanNetIPR and ARKitIPR. Our experiments demonstrate that CSCPR significantly outperforms state-of-the-art models on these datasets by at least 29.27% in Recall@1 on the ScanNet-PR dataset and 43.24% in the new datasets.
我们扩展了之前的工作 PoCo(Liang 等人,2024 年),提出了一种用于 RGB-D 室内地点识别的新算法--跨源上下文地点识别(Cross-Source-Context Place Recognition,CSCPR),该算法将全局检索和重排整合到一个端到端模型中,并保持了使用集群上下文(Context-of-Clusters,CoCs)(Ma 等人,2023 年)进行特征处理的一致性。与之前主要针对 RGB 域进行地点识别重排的方法不同,CSCPR 专为处理 RGB-D 数据而设计。我们将 CoCs 应用于处理跨源和跨比例 RGB-D 点云,并引入了两个用于重排的新模块:自上下文簇(SCC)和跨源上下文簇(CSCC),这两个模块分别用于增强特征表示和基于本地特征匹配查询-数据库对。我们还发布了两个新数据集:ScanNetIPR 和 ARKitIPR。我们的实验证明,CSCPR 在这些数据集上的表现明显优于最先进的模型,在 ScanNet-PR 数据集上的 Recall@1 至少为 29.27%,在新数据集上的 Recall@1 至少为 43.24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信