Bipartite binding number, k-factor and spectral radius of bipartite graphs

IF 0.7 3区 数学 Q2 MATHEMATICS
Yifang Hao , Shuchao Li , Yuantian Yu
{"title":"Bipartite binding number, k-factor and spectral radius of bipartite graphs","authors":"Yifang Hao ,&nbsp;Shuchao Li ,&nbsp;Yuantian Yu","doi":"10.1016/j.disc.2025.114511","DOIUrl":null,"url":null,"abstract":"<div><div>The binding number <span><math><mi>b</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a graph <em>G</em> is the minimum value of <span><math><mo>|</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>|</mo><mo>/</mo><mo>|</mo><mi>S</mi><mo>|</mo></math></span> taken over all non-empty subsets <em>S</em> of <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> such that <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>≠</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. The bipartite binding number <span><math><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a bipartite graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> is defined to be <span><math><mi>min</mi><mo>⁡</mo><mo>{</mo><mo>|</mo><mi>X</mi><mo>|</mo><mo>,</mo><mo>|</mo><mi>Y</mi><mo>|</mo><mo>}</mo></math></span> if <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo><mo>,</mo><mo>|</mo><mi>Y</mi><mo>|</mo></mrow></msub></math></span> and<span><span><span><math><mi>min</mi><mo>⁡</mo><mrow><mo>{</mo><munder><mi>min</mi><mrow><mtable><mtr><mtd><mo>∅</mo><mo>≠</mo><mi>S</mi><mo>⊆</mo><mi>X</mi></mtd></mtr><mtr><mtd><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>⊊</mo><mi>Y</mi></mtd></mtr></mtable></mrow></munder><mo>⁡</mo><mfrac><mrow><mo>|</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>|</mo></mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow></mfrac><mo>,</mo><mspace></mspace><munder><mi>min</mi><mrow><mtable><mtr><mtd><mo>∅</mo><mo>≠</mo><mi>T</mi><mo>⊆</mo><mi>Y</mi></mtd></mtr><mtr><mtd><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo><mo>⊊</mo><mi>X</mi></mtd></mtr></mtable></mrow></munder><mo>⁡</mo><mfrac><mrow><mo>|</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo><mo>|</mo></mrow><mrow><mo>|</mo><mi>T</mi><mo>|</mo></mrow></mfrac><mo>}</mo></mrow></math></span></span></span> otherwise. Fan and Lin <span><span>[9]</span></span> investigated <span><math><mi>b</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> from spectral perspectives, and provided tight sufficient conditions in terms of the spectral radius of a graph <em>G</em> to guarantee <span><math><mi>b</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>⩾</mo><mi>r</mi></math></span>, where <em>r</em> is a positive integer. The study of the existence of <em>k</em>-factors in graphs is a classic problem in graph theory. Fan and Lin <span><span>[9]</span></span> also provided the spectral radius conditions for 1-binding graphs to contain a perfect matching and a 2-factor, respectively. In this paper, we consider the bipartite analogues of those results obtained in <span><span>[9]</span></span>. For a balanced bipartite graph <em>G</em>, we first provide two sufficient conditions to guarantee that <span><math><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>⩾</mo><mi>r</mi></math></span> for a positive integer <em>r</em>, in which one is based on the size, the other is based on the spectral radius of <em>G</em>. Then we establish two sufficient conditions for the balanced bipartite graph <em>G</em> with <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>⩾</mo><mi>k</mi></math></span> to admit a <em>k</em>-factor via the size and spectral radius of <em>G</em>, respectively. Related problems are also proposed for potential future work.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114511"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001190","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The binding number b(G) of a graph G is the minimum value of |NG(S)|/|S| taken over all non-empty subsets S of V(G) such that NG(S)V(G). The bipartite binding number b(G) of a bipartite graph G=(X,Y) is defined to be min{|X|,|Y|} if G=K|X|,|Y| andmin{minSXNG(S)Y|NG(S)||S|,minTYNG(T)X|NG(T)||T|} otherwise. Fan and Lin [9] investigated b(G) from spectral perspectives, and provided tight sufficient conditions in terms of the spectral radius of a graph G to guarantee b(G)r, where r is a positive integer. The study of the existence of k-factors in graphs is a classic problem in graph theory. Fan and Lin [9] also provided the spectral radius conditions for 1-binding graphs to contain a perfect matching and a 2-factor, respectively. In this paper, we consider the bipartite analogues of those results obtained in [9]. For a balanced bipartite graph G, we first provide two sufficient conditions to guarantee that b(G)r for a positive integer r, in which one is based on the size, the other is based on the spectral radius of G. Then we establish two sufficient conditions for the balanced bipartite graph G with δ(G)k to admit a k-factor via the size and spectral radius of G, respectively. Related problems are also proposed for potential future work.
二方图的二方结合数、k 因子和谱半径
图G的绑定数b(G)是接管V(G)的所有非空子集S使NG(S)≠V(G)的|NG(S)|/|S|的最小值。若二部图G=(X,Y)的二部结合数b′(G)定义为min (min)≠S,则G=K|X|,|Y|,且min (min)≠S前程前程(S)≠Y前程前程(S)≠Y前程前程(S)≠Y前程前程(S)≠T前程前程(T)≠X前程前程(T)≠|NG(T)≠||T前程前程(15)}。Fan和Lin[9]从谱的角度研究了b(G),并根据图G的谱半径提供了严格的充分条件,以保证b(G)大于或等于r,其中r是一个正整数。图中k-因子的存在性问题是图论中的一个经典问题。Fan和Lin[9]还分别给出了1-binding图包含完美匹配和2-factor的谱半径条件。在本文中,我们考虑了[9]中所得到的结果的二部类似物。对于平衡的二部图G,我们首先提供两个充分条件来保证b ' (G)小于或等于r的正整数r,其中一个基于大小,另一个基于G的频谱半径。然后我们为δ(G)小于或等于或等于k的平衡二部图G建立两个充分条件,分别通过G的大小和频谱半径接纳k因子。并对今后可能开展的工作提出了相关问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信