Application of Raman spectroscopy and chemometrics in the mechanochemical synthesis of TIFSIX-3-Ni HUMs using twin screw extrusion

IF 4.8 3区 材料科学 Q1 CHEMISTRY, APPLIED
Ahmed Metawea , Ahmad B. Albadarin , Ozren Jovic , Nicolas Abdel Karim Aramouni , Gavin Walker , Rabah Mouras
{"title":"Application of Raman spectroscopy and chemometrics in the mechanochemical synthesis of TIFSIX-3-Ni HUMs using twin screw extrusion","authors":"Ahmed Metawea ,&nbsp;Ahmad B. Albadarin ,&nbsp;Ozren Jovic ,&nbsp;Nicolas Abdel Karim Aramouni ,&nbsp;Gavin Walker ,&nbsp;Rabah Mouras","doi":"10.1016/j.micromeso.2025.113558","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid ultra-microporous materials (HUMs) are a novel category of porous materials featuring a distinctive 3D structure composed of square lattice layers. In this study, HUMs was produced on a small scale using either solvothermal or ball milling synthesis methods. Building on the successful synthesis of HUMs via ball milling, twin-screw extrusion (TSE) appears to be a suitable method for large-scale and potentially continuous synthesis. The effect of process parameters, such as feeding rate, screw speed, barrel temperature, and liquid-to-solid ratio L/S (m/m), on the properties of the TIFSIX-3-Ni HUM was investigated. The results are presented in two sections: In the first section, we conducted a characterization and qualitative investigation to determine the crystallinity of the collected powder by analysing PXRD diffractograms. The second section involves a quantitative study using partial least squares (PLS) multi-variate analysis to measure the conversion rate of the HUM acquired. This was achieved by utilizing the most effective developed calibration model. The PXRD analysis revealed that the most favourable parameters for producing the HUM involve operating at 50 and 150 RPM, at L/S of 0.5 (m/v), and manually feeding. The highest yield of inactivated TIFSIX-3-Ni was 77.7 %, achieved using Raman spectroscopy combined with the PLS model for quantitative analysis This study marks the first successful continuous synthesis of HUMs and the development of a predictive model for process optimization.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"391 ","pages":"Article 113558"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125000721","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid ultra-microporous materials (HUMs) are a novel category of porous materials featuring a distinctive 3D structure composed of square lattice layers. In this study, HUMs was produced on a small scale using either solvothermal or ball milling synthesis methods. Building on the successful synthesis of HUMs via ball milling, twin-screw extrusion (TSE) appears to be a suitable method for large-scale and potentially continuous synthesis. The effect of process parameters, such as feeding rate, screw speed, barrel temperature, and liquid-to-solid ratio L/S (m/m), on the properties of the TIFSIX-3-Ni HUM was investigated. The results are presented in two sections: In the first section, we conducted a characterization and qualitative investigation to determine the crystallinity of the collected powder by analysing PXRD diffractograms. The second section involves a quantitative study using partial least squares (PLS) multi-variate analysis to measure the conversion rate of the HUM acquired. This was achieved by utilizing the most effective developed calibration model. The PXRD analysis revealed that the most favourable parameters for producing the HUM involve operating at 50 and 150 RPM, at L/S of 0.5 (m/v), and manually feeding. The highest yield of inactivated TIFSIX-3-Ni was 77.7 %, achieved using Raman spectroscopy combined with the PLS model for quantitative analysis This study marks the first successful continuous synthesis of HUMs and the development of a predictive model for process optimization.

Abstract Image

拉曼光谱和化学计量学在使用双螺杆挤压法机械化学合成 TIFSIX-3-Ni HUMs 中的应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信