Yi Zhang , Wei Zhong Jiang , Xiang Yu Zhang , Jun Wen Shi , Yi Chao Qu , Jun Dong , Xin Ren
{"title":"Re-entrant thermal-responsive metamaterials with widely tunable thermal expansion","authors":"Yi Zhang , Wei Zhong Jiang , Xiang Yu Zhang , Jun Wen Shi , Yi Chao Qu , Jun Dong , Xin Ren","doi":"10.1016/j.compstruct.2025.119166","DOIUrl":null,"url":null,"abstract":"<div><div>Auxetic metamaterials have been widely used in sensing, flexible medical devices, and energy absorption, due to their extraordinary physical properties. However, the active tunability of their deformation shapes and mechanical performances remains a significant challenge, which limits the functional applications. Here, we fabricate several auxetic re-entrant honeycombs integrated with thermostat metal strips to achieve arbitrary thermal shape morphing at a wide temperature range. The findings indicate that the maximum positive and negative thermal strains achieved are 45 % and 37 %, respectively. In addition, we introduce a customizable thermal deformation strategy by tessellating the unit cells with different thermo-responsive characteristics, including isotropic or anisotropic thermal expansions. An Ashby plot of thermal strain vs. temperature span among current thermo-responsive metamaterials is concluded to quantitatively compare the capacities that actively tune their thermal morphing configurations. The uniaxial thermal strain range in finite elements is substantially expanded to –47 % to 94 % at a wide working temperature range. Various potential functionalities and applications are illustrated including the tunable bandgap for vibration isolation, multisignal conversion in sensing devices, and thermal actuators.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"364 ","pages":"Article 119166"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325003319","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Auxetic metamaterials have been widely used in sensing, flexible medical devices, and energy absorption, due to their extraordinary physical properties. However, the active tunability of their deformation shapes and mechanical performances remains a significant challenge, which limits the functional applications. Here, we fabricate several auxetic re-entrant honeycombs integrated with thermostat metal strips to achieve arbitrary thermal shape morphing at a wide temperature range. The findings indicate that the maximum positive and negative thermal strains achieved are 45 % and 37 %, respectively. In addition, we introduce a customizable thermal deformation strategy by tessellating the unit cells with different thermo-responsive characteristics, including isotropic or anisotropic thermal expansions. An Ashby plot of thermal strain vs. temperature span among current thermo-responsive metamaterials is concluded to quantitatively compare the capacities that actively tune their thermal morphing configurations. The uniaxial thermal strain range in finite elements is substantially expanded to –47 % to 94 % at a wide working temperature range. Various potential functionalities and applications are illustrated including the tunable bandgap for vibration isolation, multisignal conversion in sensing devices, and thermal actuators.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.