Photobiomodulation therapy induces NG2 activation through dermal adipocyte lipolysis during wound healing

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ivana Márcia Alves Diniz , Rafaela Férrer de Oliveira , Isabella Bittencourt do Valle , Caroline Carvalho Picoli , Humberto Jácome-Santos , Luiza de Almeida Queiroz Ferreira , Gleide Fernandes Avelar , Marina Gonçalves Diniz , Alexander Bibrair
{"title":"Photobiomodulation therapy induces NG2 activation through dermal adipocyte lipolysis during wound healing","authors":"Ivana Márcia Alves Diniz ,&nbsp;Rafaela Férrer de Oliveira ,&nbsp;Isabella Bittencourt do Valle ,&nbsp;Caroline Carvalho Picoli ,&nbsp;Humberto Jácome-Santos ,&nbsp;Luiza de Almeida Queiroz Ferreira ,&nbsp;Gleide Fernandes Avelar ,&nbsp;Marina Gonçalves Diniz ,&nbsp;Alexander Bibrair","doi":"10.1016/j.jphotobiol.2025.113151","DOIUrl":null,"url":null,"abstract":"<div><div>Photobiomodulation therapy (PBMT) is a rapidly advancing approach for restoring damaged tissues, particularly in skin and mucosal wounds. While its application is promising, the role of mature adipocytes in regenerating mesenchymal tissues after PBMT remains largely unexplored. This study demonstrates that PBMT applied to skin wounds significantly reduces the number and size of mature adipocytes. Additionally, PBMT modulates the upregulation of <em>peroxisome proliferator-activated receptor γ</em> (<em>PPARγ</em>), increasing the gene expression of <em>fatty acid binding protein 4</em> (<em>Fabp4</em>) and <em>perilipin 1</em>, which are linked to enhanced lipolysis. The molecular activation of <em>neural/glial antigen 2</em> (<em>NG2</em>) indicates the recruitment of progenitor cells following mature adipocytes lipolysis. <em>In vitro</em>, PBMT improved dermal skin cell proliferation, migration, inflammatory regulation, and differentiation capacities. These findings reveal a novel mechanistic pathway for skin regeneration, emphasizing the therapeutic potential of PBMT in modulating dermal fat tissue to facilitate wound healing. Collectively, this emerging knowledge provides valuable insights into managing dermal fat tissue to support wound healing.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"267 ","pages":"Article 113151"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1011134425000545","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Photobiomodulation therapy (PBMT) is a rapidly advancing approach for restoring damaged tissues, particularly in skin and mucosal wounds. While its application is promising, the role of mature adipocytes in regenerating mesenchymal tissues after PBMT remains largely unexplored. This study demonstrates that PBMT applied to skin wounds significantly reduces the number and size of mature adipocytes. Additionally, PBMT modulates the upregulation of peroxisome proliferator-activated receptor γ (PPARγ), increasing the gene expression of fatty acid binding protein 4 (Fabp4) and perilipin 1, which are linked to enhanced lipolysis. The molecular activation of neural/glial antigen 2 (NG2) indicates the recruitment of progenitor cells following mature adipocytes lipolysis. In vitro, PBMT improved dermal skin cell proliferation, migration, inflammatory regulation, and differentiation capacities. These findings reveal a novel mechanistic pathway for skin regeneration, emphasizing the therapeutic potential of PBMT in modulating dermal fat tissue to facilitate wound healing. Collectively, this emerging knowledge provides valuable insights into managing dermal fat tissue to support wound healing.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
1.90%
发文量
161
审稿时长
37 days
期刊介绍: The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field. The scope includes: - Bioluminescence - Chronobiology - DNA repair - Environmental photobiology - Nanotechnology in photobiology - Photocarcinogenesis - Photochemistry of biomolecules - Photodynamic therapy - Photomedicine - Photomorphogenesis - Photomovement - Photoreception - Photosensitization - Photosynthesis - Phototechnology - Spectroscopy of biological systems - UV and visible radiation effects and vision.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信