Potassium application alleviates the drought-induced reduction in photoassimilates synthesis and distribution within the middle and upper fruiting branches, enhancing subtending cotton boll weight
Lin Liu , Yuyao Wang , Chenli Guo , Manli Zhao , Hongbin Wang , Wei Hu , Nan Cao , Zhiguo Zhou , Xuanshan Wang , Wenqing Zhao
{"title":"Potassium application alleviates the drought-induced reduction in photoassimilates synthesis and distribution within the middle and upper fruiting branches, enhancing subtending cotton boll weight","authors":"Lin Liu , Yuyao Wang , Chenli Guo , Manli Zhao , Hongbin Wang , Wei Hu , Nan Cao , Zhiguo Zhou , Xuanshan Wang , Wenqing Zhao","doi":"10.1016/j.plaphy.2025.109849","DOIUrl":null,"url":null,"abstract":"<div><div>Drought significantly reduces cotton boll yields across various fruiting branches (FBs). Potassium (K) application can partially mitigate the drought-induced damage by modifying the biosynthesis of photoassimilates in the leaf subtending to cotton boll (LSCB) and facilitating their transport to the subtending bolls, although its effects vary among FBs. The underlying mechanisms remain unclear. To investigate this, potting experiments were conducted at three soil relative water content (SRWC): 75 ± 5 % (W75), 60 ± 5 % (W60), and 45 ± 5 % (W45), along with K rates of 0 (K0), 150 (K150) and 300 (K300) kg K<sub>2</sub>O ha<sup>−1</sup>. Compared to W75, the W60 and W45 treatments reduced the photosynthesis of LSCBs in different FBs, adversely affecting carbohydrate accumulation in the subtending cotton bolls. K application can mitigate this negative impact, with the most pronounced effects observed in the middle and upper FBs. K application (K150 and K300) enhanced the net photosynthetic rate, stomatal conductance, maximum mass yield of PSII and chlorophyll content of LSCB in the middle and upper FBs compared to K0 under drought conditions. Additionally, K application significantly increased K content in LSCBs within the middle and upper FBs, which in turn elevated sucrose phosphate synthase (SPS), and sucrose synthase (SuSy) activities, reducing the conversion of sucrose into starch, ultimately facilitating carbohydrate exports to the subtending bolls. In summary, we propose a model that elucidates how K application mitigates drought damage by enhancing the exports of photoassimilates from the middle and upper FBs to their respective subtending cotton bolls.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"223 ","pages":"Article 109849"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825003778","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Drought significantly reduces cotton boll yields across various fruiting branches (FBs). Potassium (K) application can partially mitigate the drought-induced damage by modifying the biosynthesis of photoassimilates in the leaf subtending to cotton boll (LSCB) and facilitating their transport to the subtending bolls, although its effects vary among FBs. The underlying mechanisms remain unclear. To investigate this, potting experiments were conducted at three soil relative water content (SRWC): 75 ± 5 % (W75), 60 ± 5 % (W60), and 45 ± 5 % (W45), along with K rates of 0 (K0), 150 (K150) and 300 (K300) kg K2O ha−1. Compared to W75, the W60 and W45 treatments reduced the photosynthesis of LSCBs in different FBs, adversely affecting carbohydrate accumulation in the subtending cotton bolls. K application can mitigate this negative impact, with the most pronounced effects observed in the middle and upper FBs. K application (K150 and K300) enhanced the net photosynthetic rate, stomatal conductance, maximum mass yield of PSII and chlorophyll content of LSCB in the middle and upper FBs compared to K0 under drought conditions. Additionally, K application significantly increased K content in LSCBs within the middle and upper FBs, which in turn elevated sucrose phosphate synthase (SPS), and sucrose synthase (SuSy) activities, reducing the conversion of sucrose into starch, ultimately facilitating carbohydrate exports to the subtending bolls. In summary, we propose a model that elucidates how K application mitigates drought damage by enhancing the exports of photoassimilates from the middle and upper FBs to their respective subtending cotton bolls.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.