Environmentally-grown aerobic granular sludge performs more complete pharmaceutical biodegradation and wastewater treatment than lab-grown granules

IF 4.1 2区 环境科学与生态学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Kylie B. Bodle , Catherine M. Kirkland
{"title":"Environmentally-grown aerobic granular sludge performs more complete pharmaceutical biodegradation and wastewater treatment than lab-grown granules","authors":"Kylie B. Bodle ,&nbsp;Catherine M. Kirkland","doi":"10.1016/j.ibiod.2025.106081","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluated pharmaceutical removal by environmentally-grown aerobic granular sludge (AGS). Most pharmaceutical treatment studies utilize lab-grown AGS, which is cultivated from activated sludge flocs on synthetic media and therefore is likely to possess different physical and microbiological properties than its real-world counterpart. For approximately 70 days, a 60 μg/L mixture of gemfibrozil, diclofenac, and erythromycin was fed to environmentally-grown AGS. Wastewater treatment, granule characteristics, and pharmaceutical fate were monitored. Environmentally-grown granules outperformed their lab-grown counterparts in multiple ways: environmental granules were physically unimpacted by pharmaceuticals, phosphate removal remained complete, and all nitrogen removal processes were unaffected except ammonia oxidation, which was temporarily inhibited by approximately 35%. Most importantly, gemfibrozil was completely biodegraded, a result yet to be observed in any AGS study. Diclofenac and erythromycin removal were minimal and generally below 10%. The families J111, <em>Xanthomonadaceae</em>, OLB5, and <em>Weeksellaceae</em> were uniquely identified as pharmaceutical degraders. Results suggest that environmentally-grown AGS contains rare, but essential, microbial community members missing from lab-grown granules, and these communities enhance environmental granules’ resilience during pharmaceutical exposure. Altogether, this study demonstrates that lab-grown AGS may not accurately model the functional capacity of its real-world counterparts.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"202 ","pages":"Article 106081"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096483052500085X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluated pharmaceutical removal by environmentally-grown aerobic granular sludge (AGS). Most pharmaceutical treatment studies utilize lab-grown AGS, which is cultivated from activated sludge flocs on synthetic media and therefore is likely to possess different physical and microbiological properties than its real-world counterpart. For approximately 70 days, a 60 μg/L mixture of gemfibrozil, diclofenac, and erythromycin was fed to environmentally-grown AGS. Wastewater treatment, granule characteristics, and pharmaceutical fate were monitored. Environmentally-grown granules outperformed their lab-grown counterparts in multiple ways: environmental granules were physically unimpacted by pharmaceuticals, phosphate removal remained complete, and all nitrogen removal processes were unaffected except ammonia oxidation, which was temporarily inhibited by approximately 35%. Most importantly, gemfibrozil was completely biodegraded, a result yet to be observed in any AGS study. Diclofenac and erythromycin removal were minimal and generally below 10%. The families J111, Xanthomonadaceae, OLB5, and Weeksellaceae were uniquely identified as pharmaceutical degraders. Results suggest that environmentally-grown AGS contains rare, but essential, microbial community members missing from lab-grown granules, and these communities enhance environmental granules’ resilience during pharmaceutical exposure. Altogether, this study demonstrates that lab-grown AGS may not accurately model the functional capacity of its real-world counterparts.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
107
审稿时长
21 days
期刊介绍: International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信