Not just flavor: Insights into the metabolism of tea plants

IF 8.3 2区 生物学 Q1 PLANT SCIENCES
Deyuan Jiang , Weiwei Wen
{"title":"Not just flavor: Insights into the metabolism of tea plants","authors":"Deyuan Jiang ,&nbsp;Weiwei Wen","doi":"10.1016/j.pbi.2025.102716","DOIUrl":null,"url":null,"abstract":"<div><div>Tea, one of the world's most popular beverages, boasts a rich cultural history and distinctive flavor profiles. With advances in genomics and plant metabolism research, significant progress has been made in understanding the biosynthetic pathways and the underlying regulatory mechanisms of tea plants (<em>Camellia sinensis</em>). Tea metabolites play a pivotal role in determining tea flavor, and functional properties, while also being closely tied to the plant's stress resistance, environmental adaptability, and other newly discovered biological functions. In recent years, research has expanded beyond the well-characterized metabolites, such as catechins, <span>l</span>-theanine, and caffeine, to include volatile compounds, hormones, photosynthetic pigments, lignin, and other recently discovered metabolites, shedding new light on the intricate tea plant metabolism. This review highlights the biosynthetic pathways and regulatory mechanisms of key metabolites in tea plants, with a focus on the critical enzyme genes and regulatory factors. Additionally, emerging technologies and methodologies applied in tea plant metabolism research are briefly introduced. By further exploring the biological functions of tea metabolites and their upstream regulatory networks, future studies may offer theoretical insights and technological support for tea plant cultivation, tea quality improvement, and the sustainable development of the tea industry.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"85 ","pages":"Article 102716"},"PeriodicalIF":8.3000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526625000305","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tea, one of the world's most popular beverages, boasts a rich cultural history and distinctive flavor profiles. With advances in genomics and plant metabolism research, significant progress has been made in understanding the biosynthetic pathways and the underlying regulatory mechanisms of tea plants (Camellia sinensis). Tea metabolites play a pivotal role in determining tea flavor, and functional properties, while also being closely tied to the plant's stress resistance, environmental adaptability, and other newly discovered biological functions. In recent years, research has expanded beyond the well-characterized metabolites, such as catechins, l-theanine, and caffeine, to include volatile compounds, hormones, photosynthetic pigments, lignin, and other recently discovered metabolites, shedding new light on the intricate tea plant metabolism. This review highlights the biosynthetic pathways and regulatory mechanisms of key metabolites in tea plants, with a focus on the critical enzyme genes and regulatory factors. Additionally, emerging technologies and methodologies applied in tea plant metabolism research are briefly introduced. By further exploring the biological functions of tea metabolites and their upstream regulatory networks, future studies may offer theoretical insights and technological support for tea plant cultivation, tea quality improvement, and the sustainable development of the tea industry.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current opinion in plant biology
Current opinion in plant biology 生物-植物科学
CiteScore
16.30
自引率
3.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信