Varvara Kharitonova , Anastasia Lubimova , Valentin A. Milichko , Semyon V. Bachinin
{"title":"Direct laser writing of binary data on metal-organic framework surface","authors":"Varvara Kharitonova , Anastasia Lubimova , Valentin A. Milichko , Semyon V. Bachinin","doi":"10.1016/j.photonics.2025.101385","DOIUrl":null,"url":null,"abstract":"<div><div>The development of electro-optical computing systems today is proceeding at an unprecedented pace and requires the emergence of new approaches and materials for data recording and storage. Here we report on a direct laser writing (DLW) of binary data on a surface of metal-organic framework (MOF) thin film over 0.5 s with 1.5 μm resolution. The data, expressed as locally modified areas of different depth and potential, are analyzed with atomic force microscopy in Kelvin-probe regime. We reveal that an increase in laser power yields an increase in the potential of the modified area up to 100 mV (compared with 10 mV for the initial MOF surface) and decrease of the area diameter up to 1.5 μm. The mechanism of DLW is also investigated with confocal Raman spectroscopy, confirming the local modification of the structure of MOF thin film. The results, thereby, open the way for fast optical writing of electronic data with compatible density on MOFs at ambient conditions.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"64 ","pages":"Article 101385"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441025000355","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of electro-optical computing systems today is proceeding at an unprecedented pace and requires the emergence of new approaches and materials for data recording and storage. Here we report on a direct laser writing (DLW) of binary data on a surface of metal-organic framework (MOF) thin film over 0.5 s with 1.5 μm resolution. The data, expressed as locally modified areas of different depth and potential, are analyzed with atomic force microscopy in Kelvin-probe regime. We reveal that an increase in laser power yields an increase in the potential of the modified area up to 100 mV (compared with 10 mV for the initial MOF surface) and decrease of the area diameter up to 1.5 μm. The mechanism of DLW is also investigated with confocal Raman spectroscopy, confirming the local modification of the structure of MOF thin film. The results, thereby, open the way for fast optical writing of electronic data with compatible density on MOFs at ambient conditions.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.