Chaofan Liu , Zhang-Long Chen , Yun Zhao , Jian-Ping Li , Wei Wang , Jiangtao Yi
{"title":"Vertical dynamic response of a pile in three-dimensional saturated soils considering construction disturbance","authors":"Chaofan Liu , Zhang-Long Chen , Yun Zhao , Jian-Ping Li , Wei Wang , Jiangtao Yi","doi":"10.1016/j.oceaneng.2025.121097","DOIUrl":null,"url":null,"abstract":"<div><div>During pile installation, construction disturbances alter soil mechanical properties near the pile, significantly affecting the dynamic response of the pile. This paper develops a three-dimensional (3D) analytical model to investigate the vertical dynamic response (VDR) of a pile in radially inhomogeneous saturated soil. Firstly, by employing the separation variable method and incorporating the continuity and boundary conditions of the soil-pile system, the exact solution of the whole system in the frequency domain was derived. Subsequently, the time-domain velocity response under semi-sinusoidal vertical excitation is obtained using Fourier inverse transform and the convolution theorem. The accuracy and superiority of the proposed solution were validated through comparison with previous analytical solutions. Finally, the developed solution is then used to examine the impact of parameters of saturated soil and pile on the VDR of a pile. The results demonstrate that the proposed saturated model better captures the VDR of a pile in radially inhomogeneous saturated soil compared to the single-phase model. The VDR of a pile is significantly influenced by the pore water, porosity, disturbed degree and range of the saturated soil, as well as the elastic modulus of the pile.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"329 ","pages":"Article 121097"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825008108","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
During pile installation, construction disturbances alter soil mechanical properties near the pile, significantly affecting the dynamic response of the pile. This paper develops a three-dimensional (3D) analytical model to investigate the vertical dynamic response (VDR) of a pile in radially inhomogeneous saturated soil. Firstly, by employing the separation variable method and incorporating the continuity and boundary conditions of the soil-pile system, the exact solution of the whole system in the frequency domain was derived. Subsequently, the time-domain velocity response under semi-sinusoidal vertical excitation is obtained using Fourier inverse transform and the convolution theorem. The accuracy and superiority of the proposed solution were validated through comparison with previous analytical solutions. Finally, the developed solution is then used to examine the impact of parameters of saturated soil and pile on the VDR of a pile. The results demonstrate that the proposed saturated model better captures the VDR of a pile in radially inhomogeneous saturated soil compared to the single-phase model. The VDR of a pile is significantly influenced by the pore water, porosity, disturbed degree and range of the saturated soil, as well as the elastic modulus of the pile.
期刊介绍:
Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.