{"title":"IoT-CAD: A comprehensive Digital Forensics dataset for AI-based Cyberattack Attribution Detection methods in IoT environments","authors":"Hania Mohamed , Nickolaos Koroniotis , Francesco Schiliro , Nour Moustafa","doi":"10.1016/j.adhoc.2025.103840","DOIUrl":null,"url":null,"abstract":"<div><div>Tracing and identifying attack characteristics, known as Cyberattack Attribution Detection (CAD), is in its early stages. It requires utilizing Deep Learning (DL) techniques to scan multiple devices to identify cyberattacks and detect their attributes effectively in IoT environments. Training and validation of these techniques require comprehensive datasets generated from heterogeneous data sources. However, there is a lack of high-quality and diverse IoT-based datasets involving cyberattack attributes. In this paper, a testbed and novel Internet of Things (IoT) forensics dataset suitable for CAD, called IoT-CAD, are introduced. The proposed dataset focuses on obtaining traces from Windows and Linux operating systems to encompass a plethora of sources, such as memory information, hard drives, processes, system calls, and network traffic. It incorporates traces from many IoT devices and realistic attack scenarios to ensure its relevance and applicability to real-world situations. After collecting, processing and analyzing the dataset, it is evaluated using Machine Learning (ML), Digital Forensics (DF), and Explainable AI (X-AI) techniques. The learning evaluation involves two approaches: Centralized learning for cyberattack detection; and Federated Learning (FL) for CAD. Also, network forensics is employed to investigate the network traffic to ensure that the dataset is realistic and accurately represents attack scenarios. Furthermore, X-AI techniques are used to assess the impact and contribution of each feature on the performances of the ML models, thus justifying the data features presented . This work can be considered a baseline for CAD methods in IoT environments. The dataset can be downloaded from <span><span>https://shorturl.at/zLDG6</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"174 ","pages":"Article 103840"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870525000885","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Tracing and identifying attack characteristics, known as Cyberattack Attribution Detection (CAD), is in its early stages. It requires utilizing Deep Learning (DL) techniques to scan multiple devices to identify cyberattacks and detect their attributes effectively in IoT environments. Training and validation of these techniques require comprehensive datasets generated from heterogeneous data sources. However, there is a lack of high-quality and diverse IoT-based datasets involving cyberattack attributes. In this paper, a testbed and novel Internet of Things (IoT) forensics dataset suitable for CAD, called IoT-CAD, are introduced. The proposed dataset focuses on obtaining traces from Windows and Linux operating systems to encompass a plethora of sources, such as memory information, hard drives, processes, system calls, and network traffic. It incorporates traces from many IoT devices and realistic attack scenarios to ensure its relevance and applicability to real-world situations. After collecting, processing and analyzing the dataset, it is evaluated using Machine Learning (ML), Digital Forensics (DF), and Explainable AI (X-AI) techniques. The learning evaluation involves two approaches: Centralized learning for cyberattack detection; and Federated Learning (FL) for CAD. Also, network forensics is employed to investigate the network traffic to ensure that the dataset is realistic and accurately represents attack scenarios. Furthermore, X-AI techniques are used to assess the impact and contribution of each feature on the performances of the ML models, thus justifying the data features presented . This work can be considered a baseline for CAD methods in IoT environments. The dataset can be downloaded from https://shorturl.at/zLDG6.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.