{"title":"Interlacing property of polynomial sequences related to multinomial coefficients","authors":"Ming-Jian Ding","doi":"10.1016/j.disc.2025.114522","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we show that several consecutive generating functions of the multinomial coefficients form an interlacing sequence. As applications, we provide a positive response to a question proposed by Fisk regarding the interlacing property for zeros of polynomials, which are generated by the central trinomial (quadrinomial) coefficients.</div><div>Furthermore, we prove that some classical polynomial sequences also possess the interlacing property. These sequences include the (weak) exceedance polynomial sequence on involutions in the symmetric group, Motzkin polynomial sequence, local <em>h</em>-polynomial sequences of the cluster subdivision of Cartan-Killing types <em>A</em>, <em>B</em> and <em>D</em>, Narayana polynomial sequences of types <em>A</em> and <em>B</em>, and others.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114522"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X2500130X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we show that several consecutive generating functions of the multinomial coefficients form an interlacing sequence. As applications, we provide a positive response to a question proposed by Fisk regarding the interlacing property for zeros of polynomials, which are generated by the central trinomial (quadrinomial) coefficients.
Furthermore, we prove that some classical polynomial sequences also possess the interlacing property. These sequences include the (weak) exceedance polynomial sequence on involutions in the symmetric group, Motzkin polynomial sequence, local h-polynomial sequences of the cluster subdivision of Cartan-Killing types A, B and D, Narayana polynomial sequences of types A and B, and others.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.