Machinability analysis of UD-GFRP composites in edge trimming with diamond-coated burr tools at various fiber orientations

IF 4.6 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Benoît Schrab, Anne Collaine, Jean-Marie Freyburger, Michel Tourlonias
{"title":"Machinability analysis of UD-GFRP composites in edge trimming with diamond-coated burr tools at various fiber orientations","authors":"Benoît Schrab,&nbsp;Anne Collaine,&nbsp;Jean-Marie Freyburger,&nbsp;Michel Tourlonias","doi":"10.1016/j.cirpj.2025.03.008","DOIUrl":null,"url":null,"abstract":"<div><div>Machining operations that are usually required during the manufacturing process of fiber-reinforced polymers (FRPs) are likely to generate numerous specific defects on the machined parts. Cutting tools with specific geometries, such as burr tools with many pyramidal teeth, help to reduce this type of defect. Previous studies in milling with this kind of tool focused mainly on multidirectional (MD) FRP composites. However, it is well known that fiber orientation is a critical parameter in FRP machining. Accordingly, this paper presents a machinability analysis of unidirectional (UD) FRP composites in edge trimming at various fiber orientations, for the specific case of burr tools. Edge trimming experiments are conducted using glass fiber reinforced polymer (GFRP) composites and diamond-coated burr tools. For each machining test, cutting forces, machined surface temperature and surface quality are quantified, as well as defects on external plies, which are characterized with a device specifically developed for this purpose. The results demonstrate that all the parameters are affected greatly by fiber orientation. The maximum temperature rise and the resultant force generally move in the same direction. The surface irregularities, and the maximum rise in temperature, move globally in opposite directions. Uncut fibers on the lower face of the workpiece are related to axial forces and may be facilitated by high temperatures. Moreover, the effect of fiber orientation on cutting forces in the workpiece plane, machined surface temperature and surface quality is analogous to previous literature on orthogonal cutting.</div></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"59 ","pages":"Pages 194-206"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581725000410","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Machining operations that are usually required during the manufacturing process of fiber-reinforced polymers (FRPs) are likely to generate numerous specific defects on the machined parts. Cutting tools with specific geometries, such as burr tools with many pyramidal teeth, help to reduce this type of defect. Previous studies in milling with this kind of tool focused mainly on multidirectional (MD) FRP composites. However, it is well known that fiber orientation is a critical parameter in FRP machining. Accordingly, this paper presents a machinability analysis of unidirectional (UD) FRP composites in edge trimming at various fiber orientations, for the specific case of burr tools. Edge trimming experiments are conducted using glass fiber reinforced polymer (GFRP) composites and diamond-coated burr tools. For each machining test, cutting forces, machined surface temperature and surface quality are quantified, as well as defects on external plies, which are characterized with a device specifically developed for this purpose. The results demonstrate that all the parameters are affected greatly by fiber orientation. The maximum temperature rise and the resultant force generally move in the same direction. The surface irregularities, and the maximum rise in temperature, move globally in opposite directions. Uncut fibers on the lower face of the workpiece are related to axial forces and may be facilitated by high temperatures. Moreover, the effect of fiber orientation on cutting forces in the workpiece plane, machined surface temperature and surface quality is analogous to previous literature on orthogonal cutting.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CIRP Journal of Manufacturing Science and Technology
CIRP Journal of Manufacturing Science and Technology Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
6.20%
发文量
166
审稿时长
63 days
期刊介绍: The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信