{"title":"Gas-to-liquid (GTL) and SMR–CaL–DMR integration for advanced environmental and economic performance","authors":"Dohee Kim , Yungeon Kim , Sebin Oh , Jinwoo Park","doi":"10.1016/j.enconman.2025.119766","DOIUrl":null,"url":null,"abstract":"<div><div>The natural gas-based gas-to-liquid (GTL) process has emerged as a potential replacement technology for crude oil-based aviation fuel production. However, within the GTL process, steam methane reforming (SMR) produces CO<sub>2</sub> and generates syngas that is unsuitable for Fischer–Tropsch synthesis (FTS). To address these challenges, this study proposes a novel GTL process that integrates SMR with calcium looping, dry methane reforming, and FTS and analyzes its overall performance. Energy analysis reveals an energy efficiency of 40.8 %, while techno-economic analysis shows a decrease of 46.0 % and 48.3 % in the minimum selling price of aviation fuel and diesel, respectively. Life cycle assessment also finds that the proposed system reduces greenhouse gas emissions by 13.89 % compared to conventional aviation fuel. If at least 73 % of the grid electricity consumption in the process is supplied from alternative electricity sources, the process can meet the sustainable aviation fuel (SAF) criteria. Similarly, carbon-based scenario analysis reveals the carbon utilization efficiency to be 94.6 %. Two-variable sensitivity analysis of electricity utilization and carbon tax also determines that nuclear electricity is found to be the most economically advantageous option across all scenarios. The uncertainty analysis estimated a 98.3 % probability of achieving a price below the market price with grid electricity and a 100 % probability of remaining below the 2050 SAF cost with nuclear electricity. Therefore, the proposed system offers a feasible pathway for liquid fuel production while providing a sustainable alternative that meets increasingly stringent environmental regulations.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"332 ","pages":"Article 119766"},"PeriodicalIF":9.9000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425002894","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The natural gas-based gas-to-liquid (GTL) process has emerged as a potential replacement technology for crude oil-based aviation fuel production. However, within the GTL process, steam methane reforming (SMR) produces CO2 and generates syngas that is unsuitable for Fischer–Tropsch synthesis (FTS). To address these challenges, this study proposes a novel GTL process that integrates SMR with calcium looping, dry methane reforming, and FTS and analyzes its overall performance. Energy analysis reveals an energy efficiency of 40.8 %, while techno-economic analysis shows a decrease of 46.0 % and 48.3 % in the minimum selling price of aviation fuel and diesel, respectively. Life cycle assessment also finds that the proposed system reduces greenhouse gas emissions by 13.89 % compared to conventional aviation fuel. If at least 73 % of the grid electricity consumption in the process is supplied from alternative electricity sources, the process can meet the sustainable aviation fuel (SAF) criteria. Similarly, carbon-based scenario analysis reveals the carbon utilization efficiency to be 94.6 %. Two-variable sensitivity analysis of electricity utilization and carbon tax also determines that nuclear electricity is found to be the most economically advantageous option across all scenarios. The uncertainty analysis estimated a 98.3 % probability of achieving a price below the market price with grid electricity and a 100 % probability of remaining below the 2050 SAF cost with nuclear electricity. Therefore, the proposed system offers a feasible pathway for liquid fuel production while providing a sustainable alternative that meets increasingly stringent environmental regulations.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.