Jinbo Xiang , Mengsu Liu , Xinglong Wang , Mingyu Yue , Zhijie Qin , Jingwen Zhou
{"title":"Combined metabolic and enzymatic engineering for de novo biosynthesis of δ-tocotrienol in Yarrowia lipolytica","authors":"Jinbo Xiang , Mengsu Liu , Xinglong Wang , Mingyu Yue , Zhijie Qin , Jingwen Zhou","doi":"10.1016/j.synbio.2025.02.011","DOIUrl":null,"url":null,"abstract":"<div><div>δ-Tocotrienol, an isomer of vitamin E with anti-inflammatory, neuroprotective and anti-coronary arteriosclerosis properties, is widely used in health care, medicine and other fields. Microbial synthesis of δ-tocotrienol offers significant advantages over plant extraction and chemical synthesis methods, including increased efficiency, cost-effectiveness and environmental sustainability. However, limited precursor availability and low catalytic efficiency of key enzymes remain major bottlenecks in the biosynthesis of δ-tocotrienol. In this study, we assembled the complete δ-tocotrienol biosynthetic pathway in <em>Yarrowia lipolytica</em> and enhanced the precursor supply, resulting in a titre of 102.8 mg/L. The catalytic efficiency of the rate-limiting steps in the pathway was then enhanced through various strategies, including fusion expression of key enzymes homogentisate phytyltransferaseand and tocopherol cyclase, semi-rational design of SyHPT and multi-copy integration of pathway genes. The final a δ-tocotrienol titre in a 5 L bioreactor was 466.8 mg/L following fed-batchfermentation. This study represents the first successful <em>de novo</em> biosynthesis of δ-tocotrienol in <em>Y. lipolytica</em>, providing valuable insights into the synthesis of vitamin E-related compounds.</div></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"10 3","pages":"Pages 719-727"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X25000195","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
δ-Tocotrienol, an isomer of vitamin E with anti-inflammatory, neuroprotective and anti-coronary arteriosclerosis properties, is widely used in health care, medicine and other fields. Microbial synthesis of δ-tocotrienol offers significant advantages over plant extraction and chemical synthesis methods, including increased efficiency, cost-effectiveness and environmental sustainability. However, limited precursor availability and low catalytic efficiency of key enzymes remain major bottlenecks in the biosynthesis of δ-tocotrienol. In this study, we assembled the complete δ-tocotrienol biosynthetic pathway in Yarrowia lipolytica and enhanced the precursor supply, resulting in a titre of 102.8 mg/L. The catalytic efficiency of the rate-limiting steps in the pathway was then enhanced through various strategies, including fusion expression of key enzymes homogentisate phytyltransferaseand and tocopherol cyclase, semi-rational design of SyHPT and multi-copy integration of pathway genes. The final a δ-tocotrienol titre in a 5 L bioreactor was 466.8 mg/L following fed-batchfermentation. This study represents the first successful de novo biosynthesis of δ-tocotrienol in Y. lipolytica, providing valuable insights into the synthesis of vitamin E-related compounds.
期刊介绍:
Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.