Jinrong Duan , Limin Wang , Peng Xiao , Bei Liu , Zhi Li , Guangjin Chen
{"title":"Molecular insights into the fast hydrate formation in active ice","authors":"Jinrong Duan , Limin Wang , Peng Xiao , Bei Liu , Zhi Li , Guangjin Chen","doi":"10.1016/j.cjche.2024.11.025","DOIUrl":null,"url":null,"abstract":"<div><div>Molecular dynamics simulations were performed to study the microscopic working mechanism of fast hydrate formation from active ice. We successfully simulated the cyclic process of ice melt-hydrate formation-ice melt. The simulation results showed that active ice could significantly accelerate the formation of hydrates and exhibit high gas storage capacity. The oxygen atoms of the sulfate group in SDS formed hydrogen bonds with the hydrogen atoms of water molecules in the ice, destroying the orderly arranged structures of the ice surface. SDS also acted as a promoter to accelerate the mass transfer of guests in the liquid phase, thereby promoting the nucleation and growth of hydrates. The ordered structures of liquid phase formed by ice melting and the formation of cage-like structures facilitated by ice surface defects were beneficial to the nucleation and growth of hydrates. The formation of the hydrate shell accelerated the migration of the guests from the gas phase to the liquid phase. As the ice continued to melt, sufficient guests and water molecules ensured the stable growth of hydrates.</div></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":"80 ","pages":"Pages 198-212"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954125000850","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular dynamics simulations were performed to study the microscopic working mechanism of fast hydrate formation from active ice. We successfully simulated the cyclic process of ice melt-hydrate formation-ice melt. The simulation results showed that active ice could significantly accelerate the formation of hydrates and exhibit high gas storage capacity. The oxygen atoms of the sulfate group in SDS formed hydrogen bonds with the hydrogen atoms of water molecules in the ice, destroying the orderly arranged structures of the ice surface. SDS also acted as a promoter to accelerate the mass transfer of guests in the liquid phase, thereby promoting the nucleation and growth of hydrates. The ordered structures of liquid phase formed by ice melting and the formation of cage-like structures facilitated by ice surface defects were beneficial to the nucleation and growth of hydrates. The formation of the hydrate shell accelerated the migration of the guests from the gas phase to the liquid phase. As the ice continued to melt, sufficient guests and water molecules ensured the stable growth of hydrates.
期刊介绍:
The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors.
The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.