Ahmed M. Ismail , Ahmed ElBanna , Tamer M. Nassef , Ludger Keilig , Christoph Bourauel
{"title":"Is Simulation of Glued Contact Sufficient to Simulate Nonlinear Failure Behaviour in Dental Shear Bond Strength Tests?","authors":"Ahmed M. Ismail , Ahmed ElBanna , Tamer M. Nassef , Ludger Keilig , Christoph Bourauel","doi":"10.1016/j.identj.2025.03.007","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this study was to develop a numerical model for simulating shear bond strength tests with different specimen sizes and loading techniques. A finite element model was generated consisting of a composite specimen bonded to dentin substrate surrounded by enamel, acrylic resin and polypropylene tube. Four models were created simulating macro (diameter 1.8 mm) and micro (0.8 mm) sized specimens loaded by either a chisel or a wire loop. Experimental data from a previously published study using the identical specimen diameter and shearing tools were used as reference. Four groups were established: macro shear wire loop (group 1), micro shear wire loop (group 2), macro shear chisel (group 3), and micro shear chisel (group 4). In the simulations, contact-based glue failure based on shear contact stresses (series 1) or a combination of shear and normal contact stresses (series 2) were used to simulate the progressive failure of the specimens. Shear and normal failure stress limits were fitted to the experimental results in sensitivity analyses by varying both stresses. Experimental failure forces could be reproduced using group-specific shear stress limits of 71 (group 1), 48 (group 2), 106 (group 3), and 131 MPa (group 4) in series 1. However, when also considering normal stresses, no single, unique pair of shear and normal failure stresses can lead to the experimental failure force values for all groups. In conclusion, no unique pair of shear and normal stresses can provide the same failure force values for different shear setup geometries.</div></div>","PeriodicalId":13785,"journal":{"name":"International dental journal","volume":"75 3","pages":"Pages 1746-1758"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International dental journal","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020653925000784","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study was to develop a numerical model for simulating shear bond strength tests with different specimen sizes and loading techniques. A finite element model was generated consisting of a composite specimen bonded to dentin substrate surrounded by enamel, acrylic resin and polypropylene tube. Four models were created simulating macro (diameter 1.8 mm) and micro (0.8 mm) sized specimens loaded by either a chisel or a wire loop. Experimental data from a previously published study using the identical specimen diameter and shearing tools were used as reference. Four groups were established: macro shear wire loop (group 1), micro shear wire loop (group 2), macro shear chisel (group 3), and micro shear chisel (group 4). In the simulations, contact-based glue failure based on shear contact stresses (series 1) or a combination of shear and normal contact stresses (series 2) were used to simulate the progressive failure of the specimens. Shear and normal failure stress limits were fitted to the experimental results in sensitivity analyses by varying both stresses. Experimental failure forces could be reproduced using group-specific shear stress limits of 71 (group 1), 48 (group 2), 106 (group 3), and 131 MPa (group 4) in series 1. However, when also considering normal stresses, no single, unique pair of shear and normal failure stresses can lead to the experimental failure force values for all groups. In conclusion, no unique pair of shear and normal stresses can provide the same failure force values for different shear setup geometries.
期刊介绍:
The International Dental Journal features peer-reviewed, scientific articles relevant to international oral health issues, as well as practical, informative articles aimed at clinicians.