Yutaka Sugita , Hirokazu Ohno , Steffen Beese , Pengzhi Pan , Minseop Kim , Changsoo Lee , Carlos Jove-Colon , Carlos M. Lopez , Suu-yan Liang
{"title":"Numerical simulation of coupled THM behaviour of full-scale EBS in backfilled experimental gallery in the Horonobe URL","authors":"Yutaka Sugita , Hirokazu Ohno , Steffen Beese , Pengzhi Pan , Minseop Kim , Changsoo Lee , Carlos Jove-Colon , Carlos M. Lopez , Suu-yan Liang","doi":"10.1016/j.gete.2025.100668","DOIUrl":null,"url":null,"abstract":"<div><div>Bentonite-based engineered barrier system (EBS) is a key component of many repository designs for the geological disposal of high-level radioactive waste. Given the complexity and interaction of the phenomena affecting the barrier system, coupled thermo-hydro-mechanical (THM) numerical analyses are a potentially useful tool for a better understanding of their behaviour. In this context, a Task (the Horonobe EBS experiment) was undertaken to study, using numerical analyses, the thermo-hydro-mechanical (and thermo-hydro) interactions in bentonite based engineered barriers within the international cooperative project DECOVALEX 2023. One full-scale in-situ experiment and four laboratory experiments, largely complementary, were selected for modelling. The Horonobe EBS experiment is a temperature-controlled non-isothermal experiment combined with artificial groundwater injection. The Horonobe EBS experiment consists of the heating and cooling phases. Six research teams performed the THM or TH (depended on research team approach) numerical analyses using a variety of computer codes, formulations and constitutive laws. For each experiment, the basic features of the analyses are described and the comparison between calculations and laboratory experiments and field observations are presented and discussed.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"42 ","pages":"Article 100668"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380825000334","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Bentonite-based engineered barrier system (EBS) is a key component of many repository designs for the geological disposal of high-level radioactive waste. Given the complexity and interaction of the phenomena affecting the barrier system, coupled thermo-hydro-mechanical (THM) numerical analyses are a potentially useful tool for a better understanding of their behaviour. In this context, a Task (the Horonobe EBS experiment) was undertaken to study, using numerical analyses, the thermo-hydro-mechanical (and thermo-hydro) interactions in bentonite based engineered barriers within the international cooperative project DECOVALEX 2023. One full-scale in-situ experiment and four laboratory experiments, largely complementary, were selected for modelling. The Horonobe EBS experiment is a temperature-controlled non-isothermal experiment combined with artificial groundwater injection. The Horonobe EBS experiment consists of the heating and cooling phases. Six research teams performed the THM or TH (depended on research team approach) numerical analyses using a variety of computer codes, formulations and constitutive laws. For each experiment, the basic features of the analyses are described and the comparison between calculations and laboratory experiments and field observations are presented and discussed.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.