Exploring the function of key species in different composting stages for effective waste biotransformation

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Shang Ding , Jialin Zhong , Shuwen Du , Xiaofan Liu , Aiping Yao , Xinhua Xu , Donglei Wu
{"title":"Exploring the function of key species in different composting stages for effective waste biotransformation","authors":"Shang Ding ,&nbsp;Jialin Zhong ,&nbsp;Shuwen Du ,&nbsp;Xiaofan Liu ,&nbsp;Aiping Yao ,&nbsp;Xinhua Xu ,&nbsp;Donglei Wu","doi":"10.1016/j.jenvman.2025.125234","DOIUrl":null,"url":null,"abstract":"<div><div>Composting is a microbial-driven process that plays a vital role in recycling waste and promoting sustainable production. To develop more effective bioaugmentation strategies, this study examined three successive stages in an aerobic composting system, focusing on microbial community adaptation to high-temperature stress (mode_2) and nutrient-poor conditions (mode_3). The results revealed a shift from an r-strategy (rapid growth) to a K-strategy (thriving under resource-limited conditions). Community succession was predominantly driven by deterministic processes (&gt;90 %) and exhibited strong cooperative interactions. Using multiple statistical approaches, key species were identified for each condition. These species enhanced microbial network connectivity under environmental stresses, increasing network edges by 29 %–35 %. Under high-temperature stress, <em>Bacillus</em> and <em>Ureibacillus</em> maintained core functions, while <em>Chelativorans</em> and <em>Aeribacillus</em> contributed to key metabolic pathways, including amino acid metabolism. In nutrient-poor conditions, <em>Saccharomonospora</em> and <em>Pseudoxanthomonas</em> enhanced overall system functionality, and <em>Novibacillus</em> played a key role in carbon and nitrogen cycling, particularly nitrogen fixation. Predictive models for microbial community stability (R<sup>2</sup> = 0.68–0.97) were developed based on these key species to enable rapid assessment of system stability. Overall, this study identifies essential microbes involved in composting across different environmental conditions and clarifies their functional roles, providing valuable insights for optimizing aerobic composting efficiency and advancing waste resource management.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"381 ","pages":"Article 125234"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479725012101","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Composting is a microbial-driven process that plays a vital role in recycling waste and promoting sustainable production. To develop more effective bioaugmentation strategies, this study examined three successive stages in an aerobic composting system, focusing on microbial community adaptation to high-temperature stress (mode_2) and nutrient-poor conditions (mode_3). The results revealed a shift from an r-strategy (rapid growth) to a K-strategy (thriving under resource-limited conditions). Community succession was predominantly driven by deterministic processes (>90 %) and exhibited strong cooperative interactions. Using multiple statistical approaches, key species were identified for each condition. These species enhanced microbial network connectivity under environmental stresses, increasing network edges by 29 %–35 %. Under high-temperature stress, Bacillus and Ureibacillus maintained core functions, while Chelativorans and Aeribacillus contributed to key metabolic pathways, including amino acid metabolism. In nutrient-poor conditions, Saccharomonospora and Pseudoxanthomonas enhanced overall system functionality, and Novibacillus played a key role in carbon and nitrogen cycling, particularly nitrogen fixation. Predictive models for microbial community stability (R2 = 0.68–0.97) were developed based on these key species to enable rapid assessment of system stability. Overall, this study identifies essential microbes involved in composting across different environmental conditions and clarifies their functional roles, providing valuable insights for optimizing aerobic composting efficiency and advancing waste resource management.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信