A. Salazar , M. Martínez , C. Reinhards , A. Rico , J. Rodríguez
{"title":"Assessment of the viscoelasticity effects on the fracture resistance of polyacrylamide-alginate hydrogels","authors":"A. Salazar , M. Martínez , C. Reinhards , A. Rico , J. Rodríguez","doi":"10.1016/j.engfracmech.2025.111105","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogels are conditioned by viscoelasticity and poroelasticity. This work aims to assess the viscoelastic dissipation on the fracture parameters of polyacrylamide-alginate hydrogels applying the Viscoelastic Fracture Mechanics approach. The viscoelastic and poroelastic contributions were separated and quantified and the analysis of the characteristic times revealed that the poroelastic contribution could be disregarded. The fracture behaviour was obtained using the viscoelastic response once the poroelastic contribution was discounted from the mechanical relaxation response. The viscoelastic dissipation on the fracture parameters was not pronounced, with better fracture resistance the higher the alginate content. A linear relation has been observed between the J-integral and Crack Tip Opening Displacement through a cohesive stress with values similar to the tensile strength.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"320 ","pages":"Article 111105"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794425003066","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogels are conditioned by viscoelasticity and poroelasticity. This work aims to assess the viscoelastic dissipation on the fracture parameters of polyacrylamide-alginate hydrogels applying the Viscoelastic Fracture Mechanics approach. The viscoelastic and poroelastic contributions were separated and quantified and the analysis of the characteristic times revealed that the poroelastic contribution could be disregarded. The fracture behaviour was obtained using the viscoelastic response once the poroelastic contribution was discounted from the mechanical relaxation response. The viscoelastic dissipation on the fracture parameters was not pronounced, with better fracture resistance the higher the alginate content. A linear relation has been observed between the J-integral and Crack Tip Opening Displacement through a cohesive stress with values similar to the tensile strength.
期刊介绍:
EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.