Miku Kono , Wei-Te Wu , Chuan-Pin Lee , Yu-Yin Chang , Yao-Hsu Yang , Ching-Chun Lin , Pau-Chung Chen
{"title":"Impact of rapid temperature fluctuations on acute stroke risk: a nationwide case-crossover study from 2001 to 2020","authors":"Miku Kono , Wei-Te Wu , Chuan-Pin Lee , Yu-Yin Chang , Yao-Hsu Yang , Ching-Chun Lin , Pau-Chung Chen","doi":"10.1016/j.lanwpc.2025.101546","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Climate factors greatly affect cardiovascular health, with stroke ranking among serious global concerns. However, the impact of rapid temperature fluctuations on stroke risk remains underexplored. Given Taiwan's aging population and the intensifying effects of climate change, understanding influence of ambient temperatures on stroke risk is crucial for public health protection. This study aimed to explore the link between ambient temperature, sudden day-to-day temperature changes, and stroke onset in Taiwan, taking air pollutants into consideration.</div></div><div><h3>Methods</h3><div>We conducted a time-stratified case-crossover study from 2001 to 2020 using Distributed Lag Nonlinear Models (DLNM) within conditional logistic regression to examine lagged associations between temperature parameters and stroke risk. We analyzed associations separately for total stroke, ischemic stroke, and hemorrhagic stroke to identify potential differences in risk patterns, using odds ratios (ORs) relative to the temperature associated with the lowest stroke risk. Data from the National Health Insurance Research Database (NHIRD) identified the study population, including 1,100,074 first-time stroke emergency events and self-matched with 2,200,148 non-stroke onset dates as controls. The primary exposure assessments included daily temperatures (mean, maximum, and minimum) and temperature fluctuations (diurnal temperature range (DTR), sudden day-to-day temperature increases (TDI), and sudden day-to-day temperature decrease (TDD)), adjusted for air pollutants (PM<sub>2.5</sub>, O<sub>3</sub>, SO<sub>2</sub>, and NO<sub>2</sub>), and rainfall. Lag periods up to 13 days prior to the corresponding event or control days were used to examine the lag effect of stroke risk.</div></div><div><h3>Findings</h3><div>Through DLNM exposure-lag-response effect analysis after adjustment for PM<sub>2.5</sub>, O<sub>3</sub>, SO<sub>2</sub>, NO<sub>2</sub>, and rainfall, the study revealed that when TDI exceeded 6 °C, the risk of ischemic stroke more than doubled compared to the lowest risk temperature (OR: 2.173, 95% CI: 1.887, 2.501). The risk continued to rise until 9 °C, with a second peak observed when TDI exceeded 16 °C (OR: 2.096, 95% CI: 1.733, 2.535). Conversely, TDD exceeding 14 °C was linked to heightened hemorrhagic stroke risk (OR: 2.187, 95% CI: 2.055, 2.326). Additionally, daily maximum temperature exceeding 35 °C was associated with an increased stroke risk, primarily affecting ischemic stroke, while daily minimum temperature below 16 °C was strongly associated with a doubled risk of hemorrhagic stroke.</div></div><div><h3>Interpretation</h3><div>Our findings indicate that sudden day-to-day temperature increases and decreases are significant predictors of stroke onset. These results emphasize a noteworthy relationship between temperature and stroke risk over consecutive days, supporting interventions aimed at reducing stroke incidence.</div></div><div><h3>Funding</h3><div>This research was supported by the <span>National Science and Technology Council</span> (NSTC), Executive Yuan, Taiwan, grant No. <span><span>NSTC-111-2119-M-865-002</span></span>.</div></div>","PeriodicalId":22792,"journal":{"name":"The Lancet Regional Health: Western Pacific","volume":"57 ","pages":"Article 101546"},"PeriodicalIF":7.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Lancet Regional Health: Western Pacific","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666606525000835","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Climate factors greatly affect cardiovascular health, with stroke ranking among serious global concerns. However, the impact of rapid temperature fluctuations on stroke risk remains underexplored. Given Taiwan's aging population and the intensifying effects of climate change, understanding influence of ambient temperatures on stroke risk is crucial for public health protection. This study aimed to explore the link between ambient temperature, sudden day-to-day temperature changes, and stroke onset in Taiwan, taking air pollutants into consideration.
Methods
We conducted a time-stratified case-crossover study from 2001 to 2020 using Distributed Lag Nonlinear Models (DLNM) within conditional logistic regression to examine lagged associations between temperature parameters and stroke risk. We analyzed associations separately for total stroke, ischemic stroke, and hemorrhagic stroke to identify potential differences in risk patterns, using odds ratios (ORs) relative to the temperature associated with the lowest stroke risk. Data from the National Health Insurance Research Database (NHIRD) identified the study population, including 1,100,074 first-time stroke emergency events and self-matched with 2,200,148 non-stroke onset dates as controls. The primary exposure assessments included daily temperatures (mean, maximum, and minimum) and temperature fluctuations (diurnal temperature range (DTR), sudden day-to-day temperature increases (TDI), and sudden day-to-day temperature decrease (TDD)), adjusted for air pollutants (PM2.5, O3, SO2, and NO2), and rainfall. Lag periods up to 13 days prior to the corresponding event or control days were used to examine the lag effect of stroke risk.
Findings
Through DLNM exposure-lag-response effect analysis after adjustment for PM2.5, O3, SO2, NO2, and rainfall, the study revealed that when TDI exceeded 6 °C, the risk of ischemic stroke more than doubled compared to the lowest risk temperature (OR: 2.173, 95% CI: 1.887, 2.501). The risk continued to rise until 9 °C, with a second peak observed when TDI exceeded 16 °C (OR: 2.096, 95% CI: 1.733, 2.535). Conversely, TDD exceeding 14 °C was linked to heightened hemorrhagic stroke risk (OR: 2.187, 95% CI: 2.055, 2.326). Additionally, daily maximum temperature exceeding 35 °C was associated with an increased stroke risk, primarily affecting ischemic stroke, while daily minimum temperature below 16 °C was strongly associated with a doubled risk of hemorrhagic stroke.
Interpretation
Our findings indicate that sudden day-to-day temperature increases and decreases are significant predictors of stroke onset. These results emphasize a noteworthy relationship between temperature and stroke risk over consecutive days, supporting interventions aimed at reducing stroke incidence.
Funding
This research was supported by the National Science and Technology Council (NSTC), Executive Yuan, Taiwan, grant No. NSTC-111-2119-M-865-002.
期刊介绍:
The Lancet Regional Health – Western Pacific, a gold open access journal, is an integral part of The Lancet's global initiative advocating for healthcare quality and access worldwide. It aims to advance clinical practice and health policy in the Western Pacific region, contributing to enhanced health outcomes. The journal publishes high-quality original research shedding light on clinical practice and health policy in the region. It also includes reviews, commentaries, and opinion pieces covering diverse regional health topics, such as infectious diseases, non-communicable diseases, child and adolescent health, maternal and reproductive health, aging health, mental health, the health workforce and systems, and health policy.