Surface Reconstruction Activates Non-Noble Metal Cathode for Proton Exchange Membrane Water Electrolyzer

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Rui Wu, Heng Liu, Jie Xu, Ming-Rong Qu, You-Yi Qin, Xu-Sheng Zheng, Jun-Fa Zhu, Hao Li, Xiao-Zhi Su, Shu-Hong Yu
{"title":"Surface Reconstruction Activates Non-Noble Metal Cathode for Proton Exchange Membrane Water Electrolyzer","authors":"Rui Wu, Heng Liu, Jie Xu, Ming-Rong Qu, You-Yi Qin, Xu-Sheng Zheng, Jun-Fa Zhu, Hao Li, Xiao-Zhi Su, Shu-Hong Yu","doi":"10.1002/aenm.202405846","DOIUrl":null,"url":null,"abstract":"Hydrogen generation via a proton exchange membrane (PEM) electrolyzer manifests the vertex of fundamental and practical studies on technology transferring electricity into hydrogen fuels. However, the harsh working conditions, especially the strong reductive acidic electrolyte-catalyst interface, make non-noble metal-based cathodes unsuitable for PEM electrolyzer. Here, a scale-up application of F modified CoP (CoP|F) cathode is demonstrated from 0.2 cm<sup>2</sup> lab-scale three-electrode setup to a commercial 38 cm<sup>2</sup> PEM electrolyzer. The operando X-ray absorption spectroscopy (XAS) and Raman results confirm that F modification can promote the breakage of Co─P bonds, reconstructed to amorphous metallic Co as true HER active sites. Density functional theory (DFT) calculations reveal that the presence of F in the CoP<sub>1-x</sub> lattice would lead to a more facile formation of P-vacancy under HER conditions, leading to more active zerovalent Co active sites for HER. This reconstructed surface shows high activity and tolerance in the reductive acidic electrolyte-catalyst interface. When used as a cathode in a commercial PEM electrolyzer, its performance is comparable to the state-of-the-art Pt/C catalyst, with a calculated hydrogen cost to be 2.17 $ kg<sub>H2</sub><sup>−1</sup>. This work suggests a surface-reconstruction pathway to fabricate cost-saving and durable non-noble metal-based cathodes for commercial PEM electrolyzers.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"6 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202405846","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen generation via a proton exchange membrane (PEM) electrolyzer manifests the vertex of fundamental and practical studies on technology transferring electricity into hydrogen fuels. However, the harsh working conditions, especially the strong reductive acidic electrolyte-catalyst interface, make non-noble metal-based cathodes unsuitable for PEM electrolyzer. Here, a scale-up application of F modified CoP (CoP|F) cathode is demonstrated from 0.2 cm2 lab-scale three-electrode setup to a commercial 38 cm2 PEM electrolyzer. The operando X-ray absorption spectroscopy (XAS) and Raman results confirm that F modification can promote the breakage of Co─P bonds, reconstructed to amorphous metallic Co as true HER active sites. Density functional theory (DFT) calculations reveal that the presence of F in the CoP1-x lattice would lead to a more facile formation of P-vacancy under HER conditions, leading to more active zerovalent Co active sites for HER. This reconstructed surface shows high activity and tolerance in the reductive acidic electrolyte-catalyst interface. When used as a cathode in a commercial PEM electrolyzer, its performance is comparable to the state-of-the-art Pt/C catalyst, with a calculated hydrogen cost to be 2.17 $ kgH2−1. This work suggests a surface-reconstruction pathway to fabricate cost-saving and durable non-noble metal-based cathodes for commercial PEM electrolyzers.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信