Efficiency Enhancement of InP-Based Quantum Dot Light-Emitting Diodes by Introducing a Phosphorescent-Dye Sensitizer in a Hole Transport Layer

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hui Wang, Lijia Zhao, Xin Bao, Hongwei Yu, Guoqiang Zhang, Ting Wang, Xiangdong Meng, Shihao Liu, Xi Yuan, Wenfa Xie
{"title":"Efficiency Enhancement of InP-Based Quantum Dot Light-Emitting Diodes by Introducing a Phosphorescent-Dye Sensitizer in a Hole Transport Layer","authors":"Hui Wang, Lijia Zhao, Xin Bao, Hongwei Yu, Guoqiang Zhang, Ting Wang, Xiangdong Meng, Shihao Liu, Xi Yuan, Wenfa Xie","doi":"10.1021/acsphotonics.4c02421","DOIUrl":null,"url":null,"abstract":"Low-toxicity indium phosphide (InP) quantum dots (QDs) have attracted considerable attention for their environmental benefits. However, compared to conventional high-performance cadmium-based QDs, InP-QDs suffer from weaker electron confinement, which leads to significant electron accumulation and nonradiative recombination in InP-based quantum dot light-emitting diodes (InP-QLEDs). In this work, we propose introducing the sensitizer as the external exciton recombination center within a hole transport layer (HTL). This sensitizer harvests accumulated electrons to form excitons and transfers energy to adjacent InP-QDs, thereby enhancing radiative recombination. To demonstrate this approach, we fabricated red InP-QLEDs with a sensitizer-doped HTL composed of poly(9,9-dioctylfluorene-<i>alt</i>-<i>N</i>-(4-<i>s</i>-butylphenyl)-diphenylamine) and tris[2-(<i>p</i>-tolyl)pyridine]iridium(III). Our results show that the introduction of the sensitizer promotes carrier-balanced injection through interfacial modification and enhances radiative recombination by collecting accumulated electrons. Together, these effects significantly improve the performance of InP-QLEDs. The maximum external quantum efficiency of the InP-QLEDs increases from 8.3 to 17.1% with a doped HTL. Moreover, the operational lifetime of the device with the sensitizer is extended by 17.6-fold. Our findings demonstrate that introducing a phosphorescent-dye sensitizer in a transporting layer is a simple and effective strategy to achieve high-performance InP-QLEDs.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"183 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c02421","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Low-toxicity indium phosphide (InP) quantum dots (QDs) have attracted considerable attention for their environmental benefits. However, compared to conventional high-performance cadmium-based QDs, InP-QDs suffer from weaker electron confinement, which leads to significant electron accumulation and nonradiative recombination in InP-based quantum dot light-emitting diodes (InP-QLEDs). In this work, we propose introducing the sensitizer as the external exciton recombination center within a hole transport layer (HTL). This sensitizer harvests accumulated electrons to form excitons and transfers energy to adjacent InP-QDs, thereby enhancing radiative recombination. To demonstrate this approach, we fabricated red InP-QLEDs with a sensitizer-doped HTL composed of poly(9,9-dioctylfluorene-alt-N-(4-s-butylphenyl)-diphenylamine) and tris[2-(p-tolyl)pyridine]iridium(III). Our results show that the introduction of the sensitizer promotes carrier-balanced injection through interfacial modification and enhances radiative recombination by collecting accumulated electrons. Together, these effects significantly improve the performance of InP-QLEDs. The maximum external quantum efficiency of the InP-QLEDs increases from 8.3 to 17.1% with a doped HTL. Moreover, the operational lifetime of the device with the sensitizer is extended by 17.6-fold. Our findings demonstrate that introducing a phosphorescent-dye sensitizer in a transporting layer is a simple and effective strategy to achieve high-performance InP-QLEDs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信